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The application of energy-saving technologies in parallel computing systems 
 

M. Sultonov1 a, B. Akmuradov1 b 
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Abstract: This scientific paper provides a detailed analysis of the architecture of parallel computing systems, their 

operational principles, and methods for organizing parallel processing. In particular, it investigates the 

dynamic performance and energy consumption of the OpenBLAS DGEMM function using software tools 

and applications designed to evaluate energy usage on multi-core processors. Throughout the study, 

effective methods for ensuring energy efficiency are developed, and mathematical models for predicting 

energy consumption are applied to assess and optimize the energy costs associated with computational 

workloads. Additionally, the paper analyzes the performance metrics of high-efficiency parallel 

computing blocks and their impact on energy efficiency. Based on the research findings, practical 

recommendations are proposed to reduce energy consumption in parallel systems without compromising 

computational performance. 
Keywords: processors, energy consumption, DVFS, CUDA, parallel computing, OpenBLAS DGEMM, energy-

efficient technologies, energy efficiency 

 

 
1. Introduction 

Ensuring energy efficiency in parallel computing 

systems has become one of the most pressing scientific and 

practical challenges today. Systems based on 

supercomputers, cloud platforms, and multi-core processors 

are increasingly being utilized due to their high 

computational capacity. However, these systems also 

consume substantial amounts of electrical energy, which not 

only increases operational costs but also directly affects 

overall system efficiency. 

High energy consumption can lead to technical failures 

and reduced hardware lifespan, in addition to exerting a 

negative impact on the environment. In the context of 

growing global demand for sustainable development and 

green technologies, the design and deployment of energy-

efficient parallel computing systems are considered essential 

steps toward preserving ecological balance and reducing 

carbon footprints. 

Moreover, effective energy management plays a critical 

role during system scalability. As additional nodes or cores 

are integrated, it is crucial to maintain a balance between 

performance and energy consumption; otherwise, system 

productivity may decline. Therefore, enhancing energy 

efficiency has become an integral part of technological 

advancement, scientific research, and industrial production. 

In Uzbekistan, several government resolutions have 

been adopted to support the optimization of parallel 

computing systems and energy efficiency. For instance, 

Resolution No. PQ-3981 dated October 23, 2018, highlights 

the low level of implementation of resource- and energy-

saving technologies and the slow pace of infrastructure 

modernization, which contribute to increased technological 

losses. Similarly, Presidential Decree No. PF-5527 dated 

August 28, 2018, established a national commission to 

address energy efficiency and the development of renewable 

energy sources. Additionally, Decree No. PF-6079 dated 

October 5, 2020, under the "Digital Uzbekistan – 2030" 

strategy, outlines initiatives for developing e-government 

and integrating state bodies into information systems. These 

 
a https://orcid.org/0009-0003-4781-1601 
b https://orcid.org/0009-0009-0661-6977 

policies and decrees set forth measures aimed at optimizing 

parallel computing systems and improving energy efficiency 

[1–3]. 

 

2. Research methodology 

The Importance of Energy Efficiency 

Modern computing infrastructures - including 

supercomputers, multi-core processors, cloud computing 

platforms, and artificial intelligence systems - are becoming 

increasingly complex and resource-intensive. Among the 

most critical resources required by these systems is electrical 

energy. Energy efficiency refers to the amount of energy 

consumed by a system to perform a specific computational 

task. This metric is of vital importance not only from a 

technical standpoint but also from economic, environmental, 

and strategic perspectives. 

Firstly, energy efficiency reduces the operational costs 

of computing systems. Data centers, industrial computing 

complexes, and scientific analysis hubs operate using 

numerous servers and processors, which demand continuous 

electrical power and cooling systems. The more efficiently a 

system operates, the less energy it consumes, significantly 

lowering service costs. This constitutes a key economic 

advantage for large IT companies, scientific institutions, and 

cloud service providers. 

Secondly, energy savings are essential for environmental 

protection. High energy consumption often increases the 

load on coal- or gas-based power plants, resulting in greater 

emissions of greenhouse gases such as CO₂. Therefore, 

energy-efficient computing systems are regarded as “green 

technologies.” With many countries and companies striving 

to adopt “carbon-neutral” or “zero-emissions” policies, the 

demand for energy-saving computing solutions is growing 

rapidly. 

Thirdly, energy efficiency is a prerequisite for scalability 

and sustainable development. Modern parallel systems are 

expanding to include thousands of cores and nodes. Each 

additional node or core increases energy consumption, and 

without effective management, overall system performance 

https://orcid.org/0009-0003-4781-1601
https://orcid.org/0009-0009-0661-6977
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may decline. For this reason, advanced algorithms, hardware 

innovations, and software strategies are being developed to 

maintain an optimal balance between energy consumption 

and processing speed. This, in turn, lays the foundation for 

the long-term growth and sustainability of parallel 

computing. 

Analysis of Research 

In 2020, information and communication technologies 

accounted for 7% of global electricity consumption, and 

forecasts suggest that by 2030, this figure will reach a 

moderate level that aligns with projected scenarios ranging 

from 7% to 21%. This trend turns the need to improve the 

energy efficiency of digital platforms into a major new 

technological challenge. 

There are two main approaches to addressing this 

challenge: hardware-based and software-based. The first 

approach focuses on developing energy-efficient hardware 

at the transistor level, aiming to design electronic devices 

that consume as little energy as possible. 

The second approach targets the development of energy-

efficient software. At the solution level, this can be further 

divided into system-level and application-level approaches. 

The system-level approach seeks to optimize the execution 

environment rather than the application itself. This currently 

represents the dominant method and includes techniques 

such as Dynamic Voltage and Frequency Scaling (DVFS), 

Dynamic Power Management (DPM), and energy-aware 

scheduling, all aimed at improving the energy efficiency of 

applications. DVFS manages the processor’s clock 

frequency to reduce dynamic power consumption, which 

arises from switching activity in processor circuits. In 

contrast, static power is consumed when the processor is in 

an idle state. DPM reduces power usage by switching off 

electronic components or transitioning them to low-power 

states [4]. 

Application-level energy optimization methods involve 

adaptable solutions at the application layer and focus on 

optimizing the application itself rather than the system 

environment [2, 3]. One of the key solution variables in this 

category is workload distribution. 

To ensure the reliability of the results presented in this 

work, a detailed statistical methodology was employed, 

involving multiple experimental runs to calculate the sample 

mean of the response variable. This methodology is based on 

the t-distribution and is used to compute the sample mean 

with a 95% confidence interval and a 0.05 (5%) margin of 

error. Moreover, the assumptions of normality and 

independence underlying the t-distribution are validated 

using Pearson’s chi-squared test. 

The book Metaheuristics: From Design to 

Implementation by Talbi serves as an excellent resource on 

the theoretical foundations and practical implementation of 

metaheuristic algorithms, covering the entire process from 

design to deployment. 

The HCLWattsUp platform, developed by Fahad and 

Manumachu, offers an API for measuring energy 

consumption based on system-level physical power metrics. 

This provides a vital tool for accurately evaluating energy 

usage [5–7]. 

Libraries such as OpenBLAS and FFTW provide 

efficient linear algebra operations and fast Fourier 

transforms, enabling the optimization of core computational 

blocks in the field of high-performance computing (HPC). 

Fahad and colleagues conducted a comparative study of 

energy measurement methods in computing systems, 

analyzing the strengths and limitations of each technique. 

The Top500 project, which ranks the world’s most powerful 

supercomputers, offers valuable insights into global trends 

in the HPC domain. The OpenDwarfs benchmark suite, 

developed by Krommydas and collaborators, is described as 

an effective tool for evaluating applications across various 

architectures [8, 9]. 

The GHOST library provides highly efficient sparse 

linear algebra blocks, expanding capabilities for efficient 

computation on heterogeneous systems. 

Domain decomposition methods proposed by 

Papadrakakis and colleagues introduce new opportunities for 

hybrid execution using both GPU and CPU architectures 

[10]. 

Khaleghzadeh and co-authors developed bi-objective 

optimization methods for running data-parallel applications 

on heterogeneous HPC platforms, focusing on both 

performance and energy efficiency. Their research is based 

on concrete algorithms and accounts for real-world 

performance profiles of platforms [11]. 

Lastovetsky and Reddy proposed data distribution 

methods based on functional performance models for 

heterogeneous systems, ensuring optimal allocation by 

considering the specific characteristics of networks and 

processors. 

Lastovetsky and Twamley presented fundamental 

research aimed at developing more realistic models of 

network efficiency. Furthermore, novel data distribution 

algorithms by Khaleghzadeh and collaborators aim to 

optimize not only execution speed but also energy efficiency 

on HPC platforms, contributing significantly to the field 

[12–14]. 

The study by Rotem et al. provides a detailed description 

of the energy management system designed for Intel’s Sandy 

Bridge microarchitecture. They highlight complex hardware 

and software approaches intended to enhance energy 

efficiency while maintaining peak performance. LIKWID, 

developed by Treibig, Hager, and Wellein, is a lightweight 

and efficient toolset designed for monitoring and analyzing 

performance in x86 multi-core environments. It allows for 

comprehensive assessment of resource utilization in multi-

core systems [15]. 

AMD’s uProf User Guide describes a tool that facilitates 

system-level efficiency and energy monitoring for AMD 

processors. In addition, AMD’s BIOS and Kernel 

Developer’s Guide (BKDG) presents essential technical 

details necessary for a deeper understanding of the Family 

15h processor architecture and its interaction with the 

system. Hackenberg and co-authors compared power 

measurement techniques on standard compute nodes, 

evaluating the accuracy, reliability, and usability of various 

methods. This research helps identify the most appropriate 

approaches for practical power monitoring. 

Intel’s System Software Developer’s Guide and 

Manycore Platform Software Stack (MPSS) for Xeon Phi 

coprocessors provide extensive information on software 

interfaces and tools necessary for efficient computing in 

multi-core and multiprocessor environments. 

Scalability Challenges in Parallel Computing 

The strength of parallel computing systems lies in their 

ability to distribute computational tasks across multiple 

cores or nodes, enabling faster and more efficient execution. 



Journal Engineer           ISSN: 3030-3893          Volume:3| Issue:2| 2025 
 

 
    June, 2025 38 

    A bridge between science and innovation https://doi.org/10.56143/3030-3893-2025-2-36-43 

 

As a result, parallel computing approaches are extensively 

applied in fields such as large-scale scientific computations, 

artificial intelligence, meteorology, and genomics. However, 

increasing the number of cores or nodes does not always lead 

to proportional gains in computational performance. This 

issue gives rise to a complex set of scalability challenges that 

can hinder optimal system performance at technical, 

software, and energy levels. 

Load Imbalance. In parallel computing, tasks are 

distributed among cores or nodes. However, if this 

distribution is not optimized, some nodes may be heavily 

overloaded while others remain underutilized or idle. For 

instance, one node may be operating at 80% capacity while 

another utilizes only 10%. This imbalance leads to a 

"bottleneck" effect  -  where the slowest-performing node 

dictates the overall execution time of the system. It also 

reduces energy efficiency, as even idle or underutilized 

resources consume power without contributing to useful 

computation. 

Communication and Synchronization Overhead. As the 

system scales by adding more cores or nodes, the 

requirements for inter-node communication and 

synchronization increase. Each parallel process, upon 

completing its portion of the task, must exchange results 

with other nodes or integrate its output into a collective 

result. This leads to network congestion, communication 

delays, and synchronization stalls. Initially, when the 

number of cores is small, communication overhead is 

minimal and the system performs efficiently. However, as 

the number of nodes increases, communication begins to 

dominate computation time  -  a phenomenon known as the 

"communication bottleneck"  -  which severely degrades 

system efficiency. 

Energy Scaling Inefficiency. One of the most critical 

aspects of scaling parallel systems is the energy-

performance trade-off associated with each added core or 

node. Ideally, each new resource should contribute to 

increased performance. However, beyond a certain point 

(e.g., beyond 64 cores), additional nodes often yield 

diminishing performance returns while continuing to 

consume energy. Consequently, the system may consume 

more power without any noticeable improvement in 

performance - or may even perform worse. This transition 

from "superlinear scalability" to "sublinear" or "negative 

scalability" illustrates a point where further scaling becomes 

detrimental rather than beneficial. 

Software and Architectural Limitations. Not all 

computational applications are infinitely scalable. Some 

algorithms are inherently unsuitable for parallel execution, 

or include sequential stages that must be executed in order. 

This is governed by the principle known as Amdahl’s Law, 

which states that the maximum speedup of a system is 

limited by the sequential portion of the workload. Moreover, 

hardware architecture also plays a significant role in 

scalability. Elements such as cache memory, network 

topology, memory access patterns, and other shared 

resources may only perform efficiently up to a certain scale, 

after which performance gains diminish or reverse. 

Challenges Associated with Heterogeneous Systems in 

Parallel Computing 

Heterogeneous computing systems consist of multiple 

types of computing resources, such as CPUs, GPUs, FPGAs, 

and DSPs, working together in a unified system. These 

systems are widely used in various fields, particularly in 

scientific computing, artificial intelligence, real-time signal 

processing, and simulation systems, to enhance 

performance. When leveraged effectively, heterogeneous 

architectures can achieve high computational power and 

energy efficiency. However, working with these systems 

presents a range of complex technical, software, and 

management-related challenges. 

Architectural Incompatibilities Between Resources. The 

devices within heterogeneous systems differ architecturally 

- for example, CPUs are designed for complex control, while 

GPUs are optimized for massive parallel processing. These 

differences result in significant incompatibilities in memory 

models, execution mechanisms, approaches to sequential 

and parallel processing, energy consumption, and 

computational speeds. Consequently, achieving equal 

performance across different devices for the same task 

becomes challenging, complicating the optimal distribution 

of workloads. 

Complexity in Programming and Adaptation. 

Programming for heterogeneous systems is a complex, time-

consuming process that requires specialized knowledge. 

Each device may require a different programming language 

or platform (e.g., C/C++ for CPUs, CUDA or OpenCL for 

GPUs). Developers must not only design computational 

algorithms but also manage data transfers between devices, 

synchronize memory, and handle resource management. 

This increases the complexity of the development process 

and raises the likelihood of errors. 

Efficient Workload Distribution and Coordination. 

Given that the capabilities of resources in heterogeneous 

systems differ, determining which tasks should be assigned 

to which device is not straightforward. Certain tasks may 

execute more efficiently on a GPU, while others may be 

better suited for a CPU. Poor workload distribution can slow 

down overall performance or fail to fully utilize the available 

resources. This negatively affects not only performance but 

also energy efficiency. 

Data Transfer and Synchronization Delays. In 

heterogeneous systems, data is typically stored in separate 

memory regions. For example, CPUs and GPUs each have 

their own dedicated memory, and data transfer between them 

occurs via networks or bridges. This transfer process 

introduces delays, additional energy consumption, and can 

slow down computation. Furthermore, synchronization 

mechanisms are required to ensure data consistency across 

devices, further consuming time and resources. 

Optimization and Monitoring Complexity. To maximize 

the efficiency of heterogeneous systems, continuous 

monitoring, workload analysis, and dynamic adjustment of 

system parameters are necessary. However, performance 

metrics, energy profiles, and synchronization mechanisms 

for different devices are not uniform. This makes it difficult 

to automate the management and optimization of the system, 

increasing the complexity of maintaining optimal system 

performance. 

Energy Management Strategies in Parallel Computing 

Modern parallel computing systems, with the increasing 

number of cores, processors, and clusters, are 

simultaneously driving up the demand for electrical energy. 

This is especially evident in large scientific centers, 

supercomputers, or cloud computing infrastructures, which 

operate on millions of transistors, resulting in high energy 

consumption. Therefore, efficient energy management is 

crucial not only from an economic and environmental 
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perspective but also for ensuring the overall performance 

efficiency of the system. Below are some of the key energy 

management strategies employed in parallel computing 

systems. 

Dynamic Voltage and Frequency Scaling (DVFS). 

DVFS technology enables dynamic adjustments to the 

processor’s operating frequency and corresponding voltage. 

When the processor is not required to run at full power, its 

frequency is reduced, thereby lowering energy consumption. 

This approach is particularly effective for energy saving 

during low-load conditions or when nodes are temporarily 

idle. However, care must be taken when using DVFS, as 

reducing frequency also results in a decrease in processing 

speed. 

Energy-aware Task Scheduling. In this strategy, system 

tasks are analyzed based on their energy and performance 

requirements before execution. Tasks that consume less 

energy are assigned to more energy-efficient devices, while 

resource-intensive tasks are allocated to higher-performance 

nodes. For instance, simple tasks such as data sorting can be 

executed on energy-efficient CPUs, while computationally 

intensive tasks such as graphics processing are offloaded to 

GPUs. This approach not only conserves energy but also 

ensures optimal utilization of system resources. 

Active and Passive Node Management (Power Gating 

and Sleep Modes). Parallel systems often consist of tens or 

even hundreds of nodes, but not all of them operate 

continuously. Unnecessary or idle nodes can be 

automatically turned off or put into sleep mode, leading to 

significant energy savings. This strategy is known as “power 

gating” or “sleep states.” For example, in data centers that 

operate 24/7, some nodes may be temporarily shut down 

during off-peak hours, thus preventing excess heat 

generation and reducing cooling costs. 

Optimizing Data Transfer and Memory Management. 

Communication and memory processes in parallel systems 

are as important as computation itself. As data exchange 

between systems increases, so does energy consumption, 

especially when large datasets are transmitted across long 

distances. Thus, energy can be saved by designing 

algorithms that maximize local memory usage, minimize 

data transfer, and reduce latency. Methods such as memory 

simplification and lazy writing are also effective strategies. 

Automated Optimization and Intelligent Management 

Systems. Recently, AI-based energy management systems 

have been developed. Using machine learning (ML) or 

artificial intelligence (AI), these systems analyze real-time 

system loads and determine how energy can be saved. Based 

on historical data, these systems predict and optimally 

distribute energy. For example, the system can predict which 

nodes are likely to be more active and keep them in an active 

state while transitioning others to a waiting mode. While 

complex, this strategy represents one of the most advanced 

approaches to energy management. 

3. Results 

Results of Research and Analysis on  

Energy-Efficient Solutions 

The acceleration and expansion of methods for 

optimizing energy consumption and performance are critical 

for ensuring energy efficiency and service quality in modern 

HPC platforms and cloud computing infrastructures. To 

achieve this expansion, it is essential to identify the key 

elements required, which involves reviewing the main stages 

of optimization methods. 

The first step involves modeling hybrid applications, 

especially when different computing devices exist within the 

execution environment. A hybrid application consists of 

multiple multi-threaded cores, which execute 

simultaneously on different computing devices within the 

platform. The load of one core may significantly affect the 

performance of other cores due to intense competition for 

resources, a consequence of the close integration of the 

devices. Thus, modeling the performance and energy 

consumption of each core in hybrid applications is a complex 

issue. 

At the same time, the research above considers 

configurations of hybrid applications that involve no more 

than one core per device. Each group of cores can be 

modeled as a single executing core, resulting in the platform 

being composed of various heterogeneous abstract 

processors. Grouping aims to minimize competition and 

interdependencies between abstract processors. 

Additionally, the overall resource utilization within the 

group is maximized, while between groups, it is minimized. 

Thus, a hybrid application is presented as a set of 

computation cores executed within core groups, which are 

referred to as heterogeneous abstract processors. As an 

example, consider the platform depicted in Figure 1, which 

consists of two multi-core processors: a 24-core Intel 

Haswell processor with 64GB of memory, and a 22-core 

Intel Skylake processor. The first multi-core processor has 

two accelerators: an Nvidia K40c graphics processor and an 

Intel Xeon Phi 3120P. The second multi-core processor 

contains an Nvidia P100 PCIe graphics processor. Thus, the 

hybrid application executed on this platform is modeled by 

four heterogeneous abstract processors: CPU_1, GPU_1, 

PHI_1, and GPU_2. CPU_1 consists of 22 (out of 24) 

processor cores, GPU_1 is an Nvidia K40c graphics 

processor with a central processor core connected via a 

separate PCI-E channel, PHI_1 represents the Intel Xeon Phi 

processor with its central processor core connected through 

a separate PCI-E channel, and GPU_2 refers to the Nvidia 

P100 PCIe graphics processor, with its central processor 

core connected via a separate PCI-E channel. 

Next, the performance and dynamic energy profiles of 

the computational cores are modeled using processor clock 

frequencies and system-level energy meters, based on a 

"ground-truth" methodology. 

Finally, taking into account either the performance or 

dynamic energy profiles (or both), the data partitioning 

algorithm solves either a single-objective optimization 

problem for performance or energy, or a multi-objective 

optimization problem for both energy and performance, 

identifying the optimal Pareto solutions (load distributions) 

that minimize execution time and energy consumption 

during parallel execution. 

However, two issues hinder the expansion of the 

proposed optimization methods. These issues are 

demonstrated by solving the two-objective optimization 

problem for energy and performance in heterogeneous 

processors with p errors. 

First, building performance and dynamic energy profiles 

using system-level energy meters and a "ground-truth" 

methodology is sequential and costly. In the two 

applications, DGEMM and 2D-FFT, building discrete 

performance and dynamic energy profiles for workloads of 

sizes 210 and 256 takes 8 hours and 14 hours, respectively. 

The profiling procedure is carried out on the Intel Skylake 
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processor. In brief, although the "ground-truth" method 

offers the highest accuracy, it is the most expensive method. 

Moreover, it cannot be used in environments without energy 

meters on the nodes. 

Second, the data partitioning algorithm is executed 

sequentially, and for intermediate values of p, the execution 

time is still very large. For example, consider HEPOPTA, 

which solves the two-objective optimization problem for 

two scientific applications - matrix multiplication 

(DGEMM) and two-dimensional Fast Fourier Transform 

(2D-FFT) - executed on a hybrid platform. HEPOPTA runs 

sequentially on a single core of the Intel Skylake multi-core 

processor. For the DGEMM application, the execution time 

of the data partitioning algorithm varies from 4 seconds to 6 

hours for p values between 12 and 192. For the 2D-FFT 

application, the execution time increases from 16 seconds to 

16 hours for p values between 12 and 192. 

Thus, there are three main challenges related to 

accelerating and expanding optimization methods on 

modern hybrid HPC platforms: 

Accelerating sequential optimization algorithms, which 

ensures the rapid calculation of Pareto-optimal solutions 

from the perspective of optimizing performance and energy 

consumption. 

For multi-core processors and accelerators, energy 

consumption measurement software sensors are used, with 

prediction models utilizing model variables that comply with 

high-additivity and energy conservation laws, as well as 

statistical tests such as high positive correlation. 

Rapid construction of performance and dynamic energy 

profiles using software energy sensors. 

All three challenges remain open problems. However, 

significant progress has been made in the development of 

software energy sensors for multi-core processors. For 

example, a software energy sensor for Intel multi-core 

processors can be implemented using a linear model for 

energy prediction based on resource utilization variables and 

performance monitoring counters (PMCs), which has shown 

an accuracy of 10-20% for popular scientific cores. 

Previous generations of Nvidia graphics processors were 

poorly equipped for modeling energy consumption during 

runtime. However, the latest generation of graphics 

processors, such as the Nvidia A40, improves the support for 

energy meters, making it easier to model energy 

consumption during runtime. 

In this work, we examined application-level 

optimization methods that address issues specific to modern 

HPC platforms. The application of these methods requires 

an energy profile for the computation cores (components) of 

hybrid parallel applications executed on different computing 

devices within HPC platforms. Therefore, we summarized 

the three main methods for energy measurement at the 

component level and provided the trade-offs in terms of 

accuracy and performance[21]. 

Finally, the expansion of energy and performance 

optimization methods is critical for ensuring energy 

efficiency and meeting service requirements in modern HPC 

platforms and cloud computing infrastructures. We 

presented the necessary building blocks for achieving this 

expansion and examined the challenges involved in this 

expansion. In brief, two important issues are rapid 

optimization methods and, particularly, accurately 

measuring the energy consumption over time for 

components operating in accelerators. 

Currently, energy consumption modeling for 

components operating in accelerators is still in its early 

stages. To date, advances in energy consumption modeling 

have mainly focused on CPUs and not accelerators. Older 

generations of Nvidia graphics processors were poorly 

equipped for modeling energy consumption during runtime. 

However, the latest generation of graphics processors, such 

as the Nvidia A40, ensures good support for energy 

consumption modeling, making it easier to model energy 

consumption accurately. 

We illustrate the results of this research with a highly 

optimized matrix multiplication program running on a 

hybrid computing platform. The program computes matrix 

multiplication based on the following formula: 

𝐶 = 𝛼 × 𝐴 × 𝐵 + 𝛽 × 𝐶     (1) 

Here, A, B, and C are matrices of sizes 𝑀 × 𝑁, 𝑁 × 𝑁, 

and 𝑀 × 𝑁, respectively, and 𝛼 and 𝛽 are real numbers. The 

program calls functions from the CUBLAS library for 

Nvidia graphics processors and functions from the Intel 

MKL DGEMM library for Intel Xeon Phi and central 

processors. The versions of Intel MKL and CUDA used are 

2017.0.2 and 9.2.148, respectively. 

The platform consists of five hybrid processors: Intel 

Haswell E5-2670V3 multi-core processor, Intel Xeon Gold 

6152 multi-core processor, Nvidia K40c graphics processor, 

Nvidia P100 PCIe graphics processor, and Intel Xeon Phi 

3120P. Additionally, the platform includes five hybrid 

abstract processors, each executing a computation core: 

CPU\_1, GPU\_1, xeonphi\_1, CPU\_2, and GPU\_2. 

The following figure shows the execution time and 

dynamic energy functions of the processors as a function of 

workload size, ranging from 64 × 10¹¹² to 19,904 × 10¹¹², 

with the first measurement scale for 𝑀 set to 64. When the 

program is executed, static and dynamic energy 

consumption is measured using the Ground-Truth method. 

The execution time functions exhibit a continuous and 

strictly increasing pattern, while the energy functions clearly 

follow linear growth functions. 

 
Figure 1. Execution Time and Energy Consumption 

In this figure, the left column presents the execution time 

and energy consumption profiles for five hybrid processors 

used in the matrix multiplication program. The right column 

excludes the Xeon Phi profile, as its energy profile 

dominates the other energy profiles. It is important to note 

that the execution time profiles for CPU_1 and CPU_2 are 

very similar; however, the energy profile of CPU_1 is 

significantly higher than that of CPU_2. 

The following figure illustrates the Pareto fronts 

obtained for two workload sizes, 12,352 × 10¹¹² and 15,552 

× 10¹¹², for the matrix multiplication program using the 

proposed algorithms. These algorithms treat energy and 

performance profiles as linear functions. Each Pareto front 

consists of four linear segments, with the solution balancing 
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the workload for minimal execution time[18]. 

Intel’s multi-matrix processors (RAPL) allow for energy 

consumption management and frequency control by setting 

an average voltage limit. Additionally, previous processor 

generations such as Sandybridge and Ivybridge E5 use 

resource utilization and performance monitoring counters 

(PMC) to predict energy consumption. 

However, for Haswell and later processors, RAPL 

utilizes separate voltage regulators to manage CPU and 

DRAM operations individually. VR IMON is an analog 

circuit in the voltage regulator (VR) that tracks current. 

However, there are delays between the measured signal and 

the actual current signal, which can affect accuracy. The 

CPU periodically measures these readings to compute 

energy consumption. 

RAPL energy counters are provided in model-specific 

registers (MSR) with a device-specific list. These energy 

areas are categorized for precise platform control. These 

areas include the Package, consisting of both the primary and 

non-primary components; DRAM, which is available only 

for servers; and CPU cores and graphics processors. 

The parallel program computes the N×N multiplication 

of two dense square matrices A and B, executed on two 

multi-matrix processors, Intel CPUs: Intel Haswell E5-

2670V3 (CPU1) and Intel Xeon Gold 6152 (CPU2). The B 

matrix is replicated on both processors. CPU1 multiplies 

matrix A1 and B, while CPU2 multiplies A2 and B. The local 

matrix multiplications are computed using Intel MKL 

DGEMM. 

 
Figure 2. Dynamic Energy Consumption of DGEMM on 

Two Multi-Matrix Intel Processors 

Matrix A is divided into two smaller sub-matrices, A1 

and A2, of dimensions M×N and K×N, respectively. These 

sub-matrices are distributed across processors using a data 

partitioning algorithm based on the model. The algorithm 

takes as input the matrix size N and the dynamic energy 

functions of the processors, e1(x, y) and e2(x, y), where 

e_i(x, y) represents the energy consumption for multiplying 

matrices of size x×y and y×y. Thus, the dynamic energy 

function is expressed as a surface. 

4. Discussion 

The algorithm intersects the surfaces of the dynamic 

energy functions in a plane where N equals the matrix size. 

The intersection forms two curves. Subsequently, the 

algorithm selects two points, (M, e1(M, N)) and (K, e2(K, 

N)), where the sum of their energy consumption, e1(M, N) 

+ e2(K, N), is minimized. 

Intel RAPL represents a more dynamic energy 

consumption model for all workload sizes compared to 

actual data. The prediction errors of Intel RAPL are 

summarized in the following table[20]. 

Table 1 

Comparison of Dynamic Energy Consumption for 

DGEMM: Intel RAPL Prediction Errors vs. Actual 

Data. 

Workload Size (N) Min Max Average 

14,336 17% 172% 65% 

14,848 12% 153% 58% 

15,360 13% 240% 56% 

16,384 2% 300% 56% 

The data partitioning algorithm determines the 

distribution of the workload by using the workload size N 

and the dynamic energy profiles of the two processors as 

input data. Then, by distributing the workload, the dynamic 

energy consumption is obtained when the parallel program 

is executed. 

 
Figure 3. Comparison of Dynamic Energy Consumption 

Results 

To organize energy-efficient parallel computing, 

specific architectural and software solutions must be 

developed. In this context, the coordinated operation of 

system components according to their energy consumption, 

the rational distribution of computational tasks, and dynamic 

workload management play a key role. In parallel computing 

environments, particularly on multi-core and GPU-based 

platforms, improving overall system performance can be 

achieved by optimizing task placement, reducing data 

exchange processes, and utilizing energy-efficient 

algorithms. 

5. Conclusion 

This research systematically examines existing 

approaches to improving energy efficiency in parallel 

computing and the key challenges associated with their 

large-scale application. The author emphasizes that the 

increasing complexity of computing systems - particularly 

the widespread use of heterogeneous architectures - has 

intensified the need for accurate and reliable energy 

consumption assessment and effective optimization. 

Specifically, finding a balance between performance and 

energy consumption in large-scale systems - i.e., saving 

energy while maintaining computational speed - has been 

highlighted as a critical issue. 

While analyzing the results achieved using existing 

technologies and methods - such as Dynamic Voltage and 

Frequency Scaling (DVFS), workload balancing, and 
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energy-aware programming models - attention has also been 

drawn to their limitations. These include the incomplete 

scalability of experimental methods used on multi-core and 

heterogeneous platforms for enhancing energy efficiency, 

the complexity of measurements, and the challenges in 

developing optimization models for systems operating in 

real environments. 

Overall, this research provides a comprehensive analysis 

of fundamental and practical approaches to enhancing the 

energy efficiency of parallel computing systems, creating a 

solid scientific foundation for future research directions in 

this field. The main idea proposed is that to achieve real 

success, not only hardware-level solutions but also 

algorithmic, software, and system-level approaches must be 

integrated into comprehensive solutions. Therefore, this 

work serves as an essential and scientifically grounded 

source for specialists and system architects researching 

parallel and energy-aware computing. 

Based on the findings of this study, the following 

proposals and recommendations have been developed: 

1. Balancing Dynamic Performance and Energy 

Consumption: As demonstrated in the research using the 

OpenBLAS DGEMM program, optimizing the balance 

between dynamic frequency scaling and energy 

consumption can enhance processor performance and reduce 

energy consumption. Algorithms that automatically adjust 

the operating frequency based on workload conditions are 

recommended. 

2. Optimizing Workload Distribution in Heterogeneous 

Systems: In multi-core and heterogeneous platforms (e.g., 

CPU-GPU combinations), it is crucial to optimally distribute 

workloads based on energy and performance metrics. By 

dividing data and tasks according to the functional 

performance model of cores, overall energy consumption 

can be reduced. 

3. Utilizing Energy Prediction and Monitoring Tools: It 

is recommended to regularly monitor system-level energy 

measurements and dynamically manage performance modes 

based on the results. For example, energy APIs such as 

HCLWattsUp can be used to determine real-time energy 

consumption and select the most effective performance 

strategies. 

4. Optimizing Parallel Programs: To enhance resource 

utilization in parallel programs, it is recommended to 

implement energy-efficient parallelization of algorithms, 

reduce unnecessary data exchanges, and maximize the 

proper loading of computational resources. 

5. Adopting Energy-Efficient Algorithms and 

Technologies: The active implementation of energy-saving 

technologies in parallel computing systems, such as "power 

gating" and "dynamic voltage and frequency scaling" 

(DVFS), can significantly reduce energy consumption. 
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