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About some application of the Rademacher function 
 

A.A. Eshkabilov1, A.T. Turaev1 
1Tashkent state transport university, Tashkent, Uzbekistan 

 

Abstract: The paper details the process of generalizing the classical Viyet formula expressed as infinite products 

of the number using Rademacher functions. This study presents the mathematical foundations of 

Rademacher functions and their application to the Viyet formula, which led to various forms of the 

number expressed as infinite products. These products have not been previously identified or have been 

insufficiently investigated in previous scientific works. The approaches proposed in the paper open the 

possibility of identifying new, previously unknown forms of infinite products. 
Keywords: innovation, engineering education, quality of education, university competitiveness. 

 
О некотором приложении функции Радемахера 

 

Эшкабилов А.А.1, Тураев А.Т.1 
1Ташкентский государственный транспортный университет, Ташкент, Узбекистан 

 

Аннотaция: В статье подробно рассматривается процесс обобщения классической формулы Viyet, 

выраженной в виде бесконечных произведений числа  , с использованием функций Радемахера. 

В этом исследовании представлены математические основы функций Радемахера и их 

применение к формуле Viyet, что привело к получению различных форм числа  , выраженных в 

виде бесконечных произведений. Эти произведения ранее не были идентифицированы или 

недостаточно исследованы в предыдущих научных работах. Предложенные в статье подходы 

открывают возможность выявления новых, ранее неизвестных форм бесконечных произведений. 

Ключевые слова: Функции Радемахера, обобщение формулы Viyet, бесконечные произведения, число   

1. Введение 

B середине XVII века, в своей классической работе 

"Оpera mathematika.... Luqduni Dfifvorum Виете получил 

удивительную формулу, в последствии сделавшую его - 

юриста по профессии, знаменитым среди математиков, 

даже и сегодняшний день. 

В работе [1], Виете рассматривает квадрат, 

вписанный в единичный круг, площадь которого, равна: 

𝑆1 = 2 

Затем, Виете увеличивает число сторон квадрата и 

получает правильный восьмистороник, вписанный в 

единичный круг. 

Его площадь равна: 

𝑆2 = 2√2 

В третьем шагу он образует вписанный в единичный 

круг правильный шестнадцати сторонник, площадь 

которого равна: 

𝑆3 = 2
2√2 − √2

 
Такой процесс он продолжает до бесконечности и 

рассматривает следующее конечное произведение: 

𝑆1
𝑆𝑛+1

=
𝑆1
𝑆2
⋅
𝑆2
𝑆3
⋅
𝑆3
𝑆4
⋅. . .⋅⋅

𝑆𝑛
𝑆𝑛+1

, 

которое после освобождения от иррациональностей 

в знаменателях, равно: 

𝑆1
𝑆𝑛+1

=
√2

2
⋅
√2 + √2

2
⋅

√2 + √2+ √2

2
. .. 

Переходя в этом равенстве к переду при 𝑛 → ∞ и 

учитывая, что 𝑙𝑖𝑚
𝑛→∞

𝑆𝑛+1 = 𝜋, он получает впервые, 

сделавшее его знаменитым, выражение 

иррационального числа 𝜋 через бесконечное 

произведение: 

2

𝜋
=
√2

2
⋅
√2 + √2

2
⋅

√2 + √2 + √2

2
⋅. .. 

В этой работе мы, пользуясь системами функций 

Радемахера, получим эту и ещё несколько 

представлений иррационального числа 
2

𝜋
 в виде 

бесконечного произведения. Итак, рассмотрим 

двоичное, троичное, ..., 𝑝 - ичное разложение числа 

𝑡, 0 ≤ 𝑡 ≤ 1: 

𝑡 =
𝜀1(𝑡)

2
+
𝜀2(𝑡)

22
+. . . +

𝜀𝑛(𝑡)

2𝑛
+. .. 

(двоичное разложение числа 𝑡)  (1) 

𝑡 =
𝜎1(𝑡)

3
+
𝜎2(𝑡)

32
+. . . +

𝜎𝑛(𝑡)

3𝑛
+. .. 

(троичное разложение числа 𝑡)   (2) 

𝑡 =
𝜏1(𝑡)

𝑝
+
𝜏2(𝑡)

𝑝2
+. . . +

𝜏𝑛(𝑡)

𝑝𝑛
+. .. 

(𝑝 - ичное разложение числа 𝑡)  (3) 
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Чтобы обеспечить единственность разложения, мы 

условимся из двух разложений 𝑝 - ично рациональных 

точек (𝑝 = 2,3, . . . ) выбрать то, в котором начиная с 

некоторой, все функции суть 𝜏𝑘(𝑡) = 0. Например, в 

случае 𝑝 = 2 из двух  

5

8
=
1

2
+
0

22
+
1

23
+
0

24
+
0

25
+. ..

 
 и  

5

8
=
1

2
+
0

22
+
0

23
+
1

24
+
1

25
+
1

26
+. ..

 

 разложений двоично рационального число 
5

8
 

выбираем первое, в случае 𝑝 = 3 из двух 
5

9
=
1

3
+

2

32
+

0

33
+

0

34
+. .. и 

5

9
=
1

3
+

1

32
+

2

33
+

2

34
+. .. разложения троично 

рационального число 
5

9
 также выбираем первое и д.т. 

Таким образом, мы считаем, что такое соглашение 

сделано со всеми разложениями 𝑝 - ично (𝑝 = 2,3, . . . ) 
рациональных чисел. Этим мы обеспечим 

единственность разложений (1) − (3). 
Разложений (1) − (3) определяют 

последовательности конечнозначных функций 

𝜀𝑘(𝑡), 𝜎𝑘(𝑡), 𝜏𝑘(𝑡): 𝜎𝑘(𝑡) = {0; 1; 2},  ( ) 0;1 ,k t = 𝜏𝑘(𝑡) =

{0; 1; 2; . . . ; 𝑝 − 1}, 𝑘 = 1,2,3, .. 
При 𝑘 = 1 графики функций 𝜀1(𝑡),  𝜎1(𝑡), 𝜏1(𝑡) 

соответственно, имеют вид: 

       

      

Вместо функций 𝜀𝑘(𝑡), 𝜎𝑘(𝑡), 𝜏𝑘(𝑡) введем более 

симметричные, по сравнению с ними, следующие 

функции, соответственно 

𝑟𝑘(𝑡) = 1 − 𝜀𝑘(𝑡), 𝑘 = 1,2,3, . ..   (4) 

𝑔𝑘(𝑡) = 2(1 − 𝜎𝑘(𝑡)), 𝑘 = 1,2,3, . ..  
 (5) 

ℎ𝑘(𝑡) = 𝑝 − 1 − 2𝜏𝑘(𝑡), 𝑘 = 1,2,3, . .. 
 (6) 

графики этих функций при 𝑘 = 1, соответственно, 

имеют вид: 

           

  
Функции 𝑟𝑘(𝑡) = 1 − 𝜀𝑘(𝑡), 𝑘 = 1,2,3, . .. введенные 

впервые Радемахером, называют функциями 

Радемахера. Функции  

𝑔𝑘(𝑡) = 2(1 − 𝜎𝑘(𝑡)), 𝑘 = 1,2,3, . .. 
и  

ℎ𝑘(𝑡) = 𝑝 − 1 − 2𝜏𝑘(𝑡), 𝑘 = 1,2,3, . .. 

мы также назовем функциями Радемахера. Известно, 

что система функций Радемахера является не полная 

ортогональная ℎ𝑘(𝑡) = 𝑝 − 1 − 2𝜏𝑘(𝑡), 𝑘 = 1,2,3, . .. 
точнее, имеет, место предложение. 

Предложение 1. Системы функций 𝑔𝑘(𝑡) = 2(1 −
𝜎𝑘(𝑡)) и ℎ𝑘(𝑡) = 𝑝 − 1 − 2𝜏𝑘(𝑡), 𝑘 = 1,2,3, . .. образуют 

неполную ортогональную систему независимых 

функций.  

Доказательство. Доказательства предложений 

проведем для функций 𝑔𝑘(𝑡) = 2(1 − 𝜎𝑘(𝑡)). А для 

функций ℎ𝑘(𝑡) = 𝑝 − 1 − 2𝜏𝑘(𝑡) доказательство 

получается аналогично. 

Из свойства функций 𝑔𝑘(𝑡) = 2(1 − 𝜎𝑘(𝑡)),  𝑘 =
1,2,3, . .. легко следует их 

ортогональность∫ 𝑔𝑚(𝑡)𝑔𝑛(𝑡)𝑑𝑡
1

0
= {
0,      если  𝑚 ≠ 𝑛
8

3
,     если  𝑚 = 𝑛

, 

а из того, что ∫ 𝑔𝑚(𝑡)𝑑𝑡
1

0
= 0, при любом 𝑚 = 1,2,3, . .. 

следует их независимость:  

∫ 𝑔𝑚(𝑡)𝑔𝑛(𝑡)𝑑𝑡
1

0

= ∫ 𝑔𝑚(𝑡)𝑑𝑡
1

0

∫ 𝑔𝑛(𝑡)𝑑𝑡
1

0

,  𝑚 ≠ 𝑛. 

Heполнота системы очевидна.  

Пользуясь теперь свойствами функций Радемахера 

легко можно доказать следующее предложение. 

Предложение 2. Число 1 − 2𝑡 имеет следующие 

представления: 

1 − 2𝑡 = ∑
𝑟𝑘(𝑡)

2𝑘
∞
𝑘=1   (7) 

1 − 2𝑡 = ∑
𝑔𝑘(𝑡)

3𝑘
∞
𝑘=1

  

(8) 
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1 − 2𝑡 = ∑
ℎ𝑘(𝑡)

𝑝𝑘
∞
𝑘=1    (9) 

Элементарное интегральное вычисление дает: 

∫ 𝑒𝑖𝑥(1−2𝑡)𝑑𝑡
1

0
=
𝑠𝑖𝑛 𝑥

𝑥
  (10) 

Предложение 3. Имеют место следующие 

представления: 

𝑠𝑖𝑛 𝑥

𝑥
=∏𝑐𝑜𝑠

𝑥

2𝑛

∞

𝑛=1

 

𝑠𝑖𝑛 𝑥

𝑥
=∏

1+ 2𝑐𝑜𝑠
2𝑥
3𝑛

3

∞

𝑛=1

 

𝑠𝑖𝑛 𝑥

𝑥
=∏

2(𝑐𝑜𝑠
𝑥
𝑝𝑛
+ 𝑐𝑜𝑠

3𝑥
𝑝𝑛
+. . . + 𝑐𝑜𝑠

(𝑝 − 1)𝑥
𝑝𝑛

)

𝑝

∞

𝑛=1

, 𝑝

= 2𝑙

 𝑠𝑖𝑛 𝑥

𝑥

=∏
1+ 2(𝑐𝑜𝑠

2𝑥
𝑝𝑛
+ 𝑐𝑜𝑠

4𝑥
𝑝𝑛
+. . . + 𝑐𝑜𝑠

(𝑝 − 1)𝑥
𝑝𝑛

)

𝑝

∞

𝑛=1

, 𝑝

= 2𝑙 + 1

 Доказательство. В силу теоремы сложения, из 

курса элементарной тригонометрии, получим: 

𝑠𝑖𝑛 𝑥 = 𝑠𝑖𝑛(
𝑥

2
+
𝑥

2
) = 2 𝑠𝑖𝑛

𝑥

2
𝑐𝑜𝑠

𝑥

2
=

 

= 22 𝑠𝑖𝑛
𝑥

22
𝑐𝑜𝑠

𝑥

22
𝑐𝑜𝑠

𝑥

2
=. .. 

. . . = 2𝑛 𝑠𝑖𝑛
𝑥

2𝑛
𝑐𝑜𝑠

𝑥

2𝑛
𝑐𝑜𝑠

𝑥

2𝑛−1
. . . 𝑐𝑜𝑠

𝑥

2
=

 

= 2𝑛 𝑠𝑖𝑛
𝑥

2𝑛
∏𝑐𝑜𝑠

𝑥

2𝑘
;

𝑛

𝑘=1

 

𝑠𝑖𝑛 𝑥 = 𝑠𝑖𝑛(
𝑥

3
+
𝑥

3
+
𝑥

3
) = 𝑠𝑖𝑛(

𝑥

3
+
2𝑥

3
) =

 

= 3𝑠𝑖𝑛
𝑥

3
⋅
1 + 2 𝑐𝑜𝑠

2𝑥
3

3
= 

= 32 𝑠𝑖𝑛
𝑥

32
⋅
1 + 2 𝑐𝑜𝑠

2𝑥
3

3

1 + 2 𝑐𝑜𝑠
2𝑥
32

3
=. ..

 

. . . = 3𝑛 𝑠𝑖𝑛
𝑥

3𝑛
⋅∏

1+ 2 𝑐𝑜𝑠
2𝑥
3𝑘

3

𝑛

𝑘=1

; 

аналогично, 

𝑠𝑖𝑛 𝑥 =

 

= 𝑝𝑛 𝑠𝑖𝑛
𝑥

𝑝𝑛

⋅∏

2(𝑐𝑜𝑠
𝑥
𝑝𝑘
+ 𝑐𝑜𝑠

3𝑥
𝑝𝑘
+. . . + 𝑐𝑜𝑠

(𝑝 − 1)𝑥
𝑝𝑘

)

𝑝

∞

𝑘=1

,

 

𝑝 = 2𝑙, 

𝑠𝑖𝑛 𝑥 =

 

= 𝑝𝑛 𝑠𝑖𝑛
𝑥

𝑝𝑛

⋅∏

1+ 2(𝑐𝑜𝑠
2𝑥
𝑝𝑘
+ 𝑐𝑜𝑠

4𝑥
𝑝𝑘
+. . . + 𝑐𝑜𝑠

(𝑝 − 1)𝑥
𝑝𝑘

)

𝑝

∞

𝑘=1

, 

𝑝 = 2𝑙 + 1 

Отсюда, поделив обе части на 𝑥 и переходя к пределу 

при 𝑛 → ∞, получим доказательство предложений. 

Для любого 𝑘 = 1,2,3, . .. обозначим через 𝑅𝑘
±, 𝐺𝑘

𝑝
 и 

𝐻𝑘
𝑝,𝑙

 множества:  

𝑅𝑘
± = {𝑡 ∈ [0,1]: 𝑟𝑘(𝑡) = ±1}, 

𝐺𝑘
𝑝
= {𝑡 ∈ [0,1]: 𝑔𝑘(𝑡) = 𝑝},     𝑝 = 0,±2; 

𝐻𝑘
𝑝,𝑙
= {𝑡 ∈ [0,1]: ℎ𝑘(𝑡) = 𝑝 − 1 − 2𝑙},     𝑙

= 0,1,2,3, . . . , 𝑝 − 1; 

Очевидно, что мера 𝜇 множеств 𝑅𝑘
±, 𝐺𝑘

𝑝
 и 𝐻𝑘

𝑝,𝑙
 равны: 

𝜇(𝑅𝑘
±) =

1

2
, 𝜇(𝐺𝑘

𝑝
) =

1

3
, для любого натурального 𝑘 и 

любого 𝑝 = 0,±2; и 𝜇(𝐻𝑘
𝑝,𝑙
) =

1

𝑝
, для любого 

натурального 𝑘 и любого 𝑙 = 0,1,2,3, . . . , 𝑝 − 1; 

Далее, пользуясь свойствами функций 𝑟𝑘(𝑡) = 1 −
𝜀𝑘(𝑡), 

𝑔𝑘(𝑡) = 2(1 − 𝜎𝑘(𝑡)) и ℎ𝑘(𝑡) = 𝑝 − 1 − 2𝜏𝑘(𝑡), 
легко получаем следующие равенства:  

∫ 𝑒
𝑖𝑥
𝑟𝑘(𝑡)

2𝑘 𝑑𝑡
1

0

= (∫ +
𝑅𝑘
+
∫  
𝑅𝑘
+
)𝑒

𝑖𝑥
𝑟𝑘(𝑡)

2𝑘 𝑑𝑡 =

 

= 𝑒
𝑖
𝑥

2𝑘
1

2
+ 𝑒

−𝑖
𝑥

2𝑘
1

2
=
𝑒
𝑖
𝑥

2𝑘 + 𝑒
−𝑖
𝑥

2𝑘

2
= 𝑐𝑜𝑠

𝑥

2𝑘
 

∫ 𝑒
𝑖𝑥
𝑔𝑘(𝑡)

3𝑘 𝑑𝑡
1

0

= (∫ +
𝐺𝑘
+2

∫ +
𝐺𝑘
0
∫  
𝐺𝑘
−2
)𝑒

𝑖𝑥
𝑔𝑘(𝑡)

3𝑘 𝑑𝑡 =

 

=
1

3
(𝑒
𝑖
2𝑥

3𝑘 + 1 + 𝑒
−𝑖
2𝑥

3𝑘) =
1+2 𝑐𝑜𝑠

2𝑥

3𝑘

3
  (11) 

при чётном 𝑝 = 2𝑙, 

∫ 𝑒
𝑖𝑥

ℎ𝑘(𝑡)

𝑝𝑘 𝑑𝑡
1

0

= (∑∫  
𝐻𝑘
𝑝,𝑙

𝑝−1

𝑙=0

)𝑒
𝑖𝑥

ℎ𝑘(𝑡)

𝑝𝑘 𝑑𝑡 =

 

=

2(𝑐𝑜𝑠
𝑥
𝑝𝑘
+ 𝑐𝑜𝑠

3𝑥
𝑝𝑘
+. . . + 𝑐𝑜𝑠

(𝑝 − 1)𝑥
𝑝𝑘

)

𝑝
; 

а при нечётном 𝑝 = 2𝑙, 

∫ 𝑒
𝑖𝑥

ℎ𝑘(𝑡)

𝑝𝑘 𝑑𝑡
1

0

= (∑∫  
𝐻𝑘
𝑝,𝑙

𝑝−1

𝑙=0

)𝑒
𝑖𝑥

ℎ𝑘(𝑡)

𝑝𝑘 𝑑𝑡 =

 

=

1 + 2(𝑐𝑜𝑠
2𝑥
𝑝𝑘
+ 𝑐𝑜𝑠

4𝑥
𝑝𝑘
+. . . + 𝑐𝑜𝑠

(𝑝 − 1)𝑥
𝑝𝑘

)

𝑝
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теперь мы в состоянии доказать следующую 

теорему.  

Теорема. Имеют место следующие равенства:  

∫ ∏𝑒
𝑖𝑥
𝑟𝑘(𝑡)

2𝑘 𝑑𝑡

∞

𝑘=1

1

0

=∏∫ 𝑒
𝑖𝑥
𝑟𝑘(𝑡)

2𝑘 𝑑𝑡
1

0

∞

𝑘=1

 

∫ ∏𝑒
𝑖𝑥
𝑔𝑘(𝑡)

3𝑘 𝑑𝑡

∞

𝑘=1

1

0

=∏∫ 𝑒
𝑖𝑥
𝑔𝑘(𝑡)

3𝑘 𝑑𝑡
1

0

∞

𝑘=1

 

∫ ∏𝑒
𝑖𝑥

ℎ𝑘(𝑡)

𝑝𝑘 𝑑𝑡

∞

𝑘=1

1

0

=∏∫ 𝑒
𝑖𝑥

ℎ𝑘(𝑡)

𝑝𝑘 𝑑𝑡
1

0

∞

𝑘=1

 

Доказательство. Доказательства теоремы проведем 

для функций 𝑔𝑘(𝑡) = 2(1 − 𝜎𝑘(𝑡)). А для функций 

𝑟𝑘(𝑡) = 1 − 𝜀𝑘(𝑡), и ℎ𝑘(𝑡) = 𝑝 − 1 − 2𝜏𝑘(𝑡) 
доказательство теоремы получается аналогично. Легко 

получить следующие равенства: с одной стороны, в силу 

(10) и (11), имеем 

∫ 𝑒𝑖𝑥(1−2𝑡)𝑑𝑡
1

0

=
𝑠𝑖𝑛 𝑥

𝑥
=∏

1+ 2𝑐𝑜𝑠
2𝑥
3𝑘

3

∞

𝑘=1

=∏∫ 𝑒
𝑖𝑥
𝑟𝑘(𝑡)

2𝑘 𝑑𝑡
1

0

,

∞

𝑘=1

 

с другой стороны, 

∫ 𝑒𝑖𝑥(1−2𝑡)𝑑𝑡
1

0

= ∫ 𝑒
𝑖𝑥 ∑

𝑔𝑘(𝑡)

3𝑘
∞
𝑘=1 𝑑𝑡

1

0

= ∫ ∏𝑒
𝑖𝑥
𝑔𝑘(𝑡)

3𝑘

∞

𝑘=1

𝑑𝑡
1

0

. 

Отсюда получаем равенство: 

∫ ∏𝑒
𝑖𝑥
𝑔𝑘(𝑡)

3𝑘

∞

𝑘=1

𝑑𝑡
1

0

=∏∫ 𝑒
𝑖𝑥
𝑔𝑘(𝑡)

3𝑘 𝑑𝑡
1

0

∞

𝑘=1

 

Аналогично доказываются остальные равенства. 

Полагая в равенствах (6) - (9) 𝑥 =
𝜋

2
, получим 

различные представления числа 
2

𝜋
 в виде бесконечных 

произведений. Здесь особый интерес представляет 

случай 𝑝 = 4. В этом случае имеем:   

2

𝜋
=
1

2
(
√2 + √2

2
+
√2 − √2

2
) ⋅

 

⋅
1

2

(

 
 
 √2 + √2 + √2 + √2

2
+

√2 + √2 + √2 − √2

2

)

 
 
 

. .. 

2. Заключение  

В этом исследовании были получены различные 

формы числа 
2

𝜋
, выраженные в виде бесконечных 

произведений, с использованием математических основ 

функций Радемахера и их применения к формуле Viyet. 

Эти произведения ранее не были идентифицированы 

или недостаточно исследованы в предыдущих научных 

работах. Представленные подходы открывают 

возможность выявления новых, ранее неизвестных 

форм бесконечных произведений. Эти разработки могут 

послужить важной основой для внедрения новых 

методов в математические исследования и улучшения 

аналитических и вычислительных подходов. Изучение 

функций Радемахера может быть применено не только в 

классической математике, но и в современных научных 

областях, таких как цифровые вычисления и 

математическое моделирование. Новые результаты 

обеспечивают научное сообщество более глубоким 

пониманием выражения чисел, таких как 
2

𝜋
, в различных 

формах произведений и открывают потенциал для 

создания новых теорий и решений на основе этих 

выражений. Эти подходы были обсуждены с точки 

зрения их значения для будущих исследований и того, 

как их можно использовать. Такие инновации в 

математике вносят значительный вклад в развитие 

научной области и могут привести научную мысль и 

подходы к инновационным направлениям. 
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