

ENGINEER

international scientific journal

ISSUE

4, 2024 Vol. 2

ISSN

3030-3893

A bridge between science and innovation

**TOSHKENT DAVLAT
TRANSPORT UNIVERSITETI**
Tashkent state
transport university

ENGINEER

A bridge between science and innovation

ISSN 3030-3893

VOLUME 2, ISSUE 4

DECEMBER, 2024

engineer.tstu.uz

TASHKENT STATE TRANSPORT UNIVERSITY

ENGINEER

INTERNATIONAL SCIENTIFIC JOURNAL
VOLUME 2, ISSUE 4 DECEMBER, 2024

EDITOR-IN-CHIEF SAID S. SHAUMAROV

Professor, Doctor of Sciences in Technics, Tashkent State Transport University

Deputy Chief Editor
Miraziz M. Talipov

Doctor of Philosophy in Technical Sciences, Tashkent State Transport University

Founder of the international scientific journal “Engineer” – Tashkent State Transport University, 100167, Republic of Uzbekistan, Tashkent, Temiryo‘lchilar str., 1, office: 465, e-mail: publication@tstu.uz.

The “Engineer” publishes the most significant results of scientific and applied research carried out in universities of transport profile, as well as other higher educational institutions, research institutes, and centers of the Republic of Uzbekistan and foreign countries.

The journal is published 4 times a year and contains publications in the following main areas:

- Engineering;
- General Engineering;
- Aerospace Engineering;
- Automotive Engineering;
- Civil and Structural Engineering;
- Computational Mechanics;
- Control and Systems Engineering;
- Electrical and Electronic Engineering;
- Industrial and Manufacturing Engineering;
- Mechanical Engineering;
- Mechanics of Materials;
- Safety, Risk, Reliability and Quality;
- Media Technology;
- Building and Construction;
- Architecture.

Tashkent State Transport University had the opportunity to publish the international scientific journal “Engineer” based on the **Certificate No. 1183** of the Information and Mass Communications Agency under the Administration of the President of the Republic of Uzbekistan. **ISSN 3030-3893**. Articles in the journal are published in English language.

Enhancing energy efficiency in industrial pump units: the role of asynchronous motors with frequency converters

O.Kh. Ishnazarov¹^a, Kh.M. Khaydarov²^b

¹Institute of Energy Problems of the Academy of Sciences of the Republic of Uzbekistan, Tashkent, Uzbekistan

²Andijan Machine-building Institute, Andijan, Uzbekistan

Abstract:

This research investigates the enhancement of energy efficiency in industrial water supply systems through the implementation of asynchronous motors equipped with frequency converters. With the global increase in energy demand and the critical need for energy-saving solutions, this study focuses on optimizing the performance of centrifugal pumps, which are integral to water management in industrial settings. Utilizing a Variable Frequency Drive (VFD) system, the study demonstrates significant energy savings by controlling motor speed and reducing power consumption. The methodology involves a comprehensive simulation using the Simulink package to model the VFD's impact on pump performance. Key findings indicate that VFDs not only decrease energy usage but also provide precise control over motor speed and torque, thereby enhancing system stability and reducing mechanical wear. These results suggest that adopting VFD technology can lead to substantial cost savings and operational efficiency in industrial water systems. The practical implications of this research are vast, offering a pathway for industries to achieve sustainability and improved energy management. Conclusively, the study underscores the importance of integrating advanced control systems to optimize the energy efficiency and reliability of industrial water supply operations.

Keywords:

Energy efficiency, industrial water systems, asynchronous motors, frequency converters, variable frequency drive (VFD), centrifugal pumps, motor speed control, energy savings, pump performance optimization

1. Introduction

Taking into account the annual decrease of energy resources in the world and the increase in demand for energy, the creation of effective and economical processes and solutions in the use of energy is an urgent topic for the field of science. If we analyze the consumption of energy resources by sectors, the energy consumed in industrial enterprises is in developed and industrialized countries, for example, 42% in the USA, 50% in Germany, 70% in China, and 44% in India. In developing countries, this indicator is gradually increasing in accordance with the level of industrialization. It can be seen from the analysis that in all countries, energy consumption values in industrial enterprises occupy dominant positions compared to other sectors. The policy of energy saving and efficiency implemented in industrial enterprises can give positive results when implemented using new technology and methods. Achieving energy efficiency with the introduction of new technologies and methods is being put into practice thanks to the possibilities of scientific achievements, such as high-speed computing machines with semiconductor technologies achieved at the end of the 20th century. At this point, it is necessary to take into account the types of energy consumers in their divisions and shops when applying the energy saving policy to industrial enterprises. In this scientific work, we will consider energy saving in the energy consumption of the water supply system available in every industrial enterprise and the introduction of modern scientific achievements in it.

The water supply system of industrial enterprises consists of the following units, which are electrical,

mechanical and hydraulic in nature. Electric units - a control cabinet consisting of a three-phase voltage network and its control and protection elements, an electric motor that converts electrical energy into mechanical energy and its control part, mechanical units - a common shaft or other type of transmission with an electric drive and the working wheel of pumps, and a hydraulic unit – primary water source, suction pipe system, pump unit, pressure pipe system and reservoir or tank capacity. The water supply system of industrial enterprises is a critical infrastructure that ensures the availability of water for various production processes, cooling systems, sanitation facilities, and other operational needs. It encompasses a comprehensive network of units and components designed to source, treat, distribute, and manage water within the industrial facility. The design and configuration of the water supply system are tailored to the specific requirements of the enterprise, taking into account factors such as water quality standards, production demands, environmental regulations, and energy efficiency considerations.

Water Sourcing and Intake: The water supply system begins with the sourcing and intake of water from external or internal water sources. External sources may include municipal water supplies, rivers, lakes, wells, or reservoirs, depending on the location and availability of water resources. Industrial enterprises may also have their own on-site water sources, such as groundwater wells or surface water sources. The intake process involves screening and filtration to remove debris, sediment, and other impurities before the water enters the treatment system.

Water Treatment Units: Once water is sourced, it undergoes treatment to meet the quality standards required

^a <https://orcid.org/0000-0003-3580-9793>

^b <https://orcid.org/0000-0002-9314-0568>

for industrial processes and other applications. Treatment processes may include:

Filtration: Removal of suspended solids and particulate matter through physical filtration methods.

Chemical Treatment: Addition of chemicals such as coagulants, flocculants, disinfectants, and pH adjusters to remove contaminants, control microbial growth, and adjust water chemistry.

Biological Treatment: Utilization of biological processes such as activated sludge, biofilters, or constructed wetlands to remove organic pollutants and nutrients.

Membrane Processes: Deployment of membrane filtration technologies such as reverse osmosis, ultrafiltration, or nanofiltration for the removal of dissolved solids, ions, and microorganisms.

These treatment units are often arranged in a sequence or combination to achieve the desired water quality objectives, which may vary depending on the specific industrial processes and regulatory requirements.

Water Distribution Network: The treated water is then distributed throughout the industrial facility via a network of pipes, pumps, valves, and storage tanks. The distribution system is designed to deliver water to various points of use efficiently and reliably, ensuring adequate flow rates and pressure levels to meet production demands. Control systems may be employed to monitor and regulate water distribution, optimizing flow patterns and minimizing energy consumption.

Cooling Systems: Industrial enterprises often require large quantities of water for cooling purposes, such as heat exchange in manufacturing processes, equipment cooling, and HVAC systems. Cooling water systems may utilize open-loop or closed-loop configurations, depending on factors such as water availability, environmental considerations, and process requirements. Cooling towers, heat exchangers, chillers, and circulation pumps are integral components of these systems, contributing to the overall energy consumption of the water supply system.

Wastewater Treatment: As industrial processes generate wastewater containing pollutants, the water supply system includes wastewater treatment units to treat and discharge or reuse the effluent safely. Wastewater treatment processes may include physical, chemical, and biological treatment methods to remove contaminants and pollutants, ensuring compliance with regulatory discharge standards and environmental regulations.

The energy consumption of the water supply system in industrial enterprises varies depending on factors such as the scale of operations, the efficiency of equipment and processes, the source and treatment methods of water, and the specific requirements of production processes. Energy-intensive components such as pumps, motors, aerators, and treatment systems contribute to the overall energy consumption of the system. Therefore, optimizing the design, operation, and maintenance of the water supply system is essential for reducing energy consumption, minimizing environmental impact, and enhancing the overall sustainability of industrial operations.

2. Methods

In industrial water systems, pumps are essential components utilized for the transfer, circulation, and management of water. The selection of an appropriate motor

type for these pumps is critical, as it directly impacts the efficiency, reliability, and overall performance of the system. Several motor types are commonly employed in such applications, each offering unique characteristics tailored to specific operational requirements. The most prevalent motor types used in pump units for industrial water systems include induction motors, synchronous motors, and permanent magnet motors.

Induction motors are the most commonly used type in industrial water systems due to their reliability, ruggedness, and cost-effectiveness. These motors operate on the principle of electromagnetic induction, where a rotating magnetic field is induced in the motor's stator coils, causing the rotor to rotate due to electromagnetic interaction. Induction motors are known for their robust construction, high starting torque, and ability to operate in various environmental conditions. They are well-suited for applications requiring continuous operation, such as water circulation in cooling systems, wastewater treatment plants, and irrigation systems. Induction motors offer a wide range of power ratings and speeds, making them versatile for different pump sizes and flow rates.

Synchronous motors are characterized by their synchronous speed, where the rotor rotates at the same speed as the rotating magnetic field in the stator. Unlike induction motors, synchronous motors require an external power source, such as a DC excitation or an electronic controller, to establish synchronism between the stator and rotor fields. Synchronous motors exhibit precise speed control, high efficiency, and power factor correction capabilities, making them suitable for applications demanding constant speed operation and stringent control requirements. In industrial water systems, synchronous motors are often utilized in high-performance pumps, such as those used in water supply networks, hydroelectric power plants, and large-scale water treatment facilities. Their ability to maintain constant speed and synchronize with grid frequency makes them ideal for applications where stability and reliability are paramount.

Permanent magnet motors utilize permanent magnets embedded in the rotor to generate the magnetic field, eliminating the need for separate excitation sources or rotor windings. These motors offer higher power density, improved efficiency, and reduced maintenance compared to induction and synchronous motors. Permanent magnet motors are particularly advantageous in applications where space constraints, energy efficiency, and dynamic performance are critical factors. In industrial water systems, they are commonly employed in compact and energy-efficient pumps, such as those used in HVAC (heating, ventilation, and air conditioning) systems, booster pumps, and smaller-scale water distribution networks. Their compact design and high torque-to-inertia ratio make them well-suited for applications requiring rapid acceleration and deceleration, as well as precise speed control.

Each motor type has its unique advantages and limitations, and the selection process involves careful consideration of factors such as operating conditions, system requirements, energy efficiency, and lifecycle costs. While induction motors offer reliability and cost-effectiveness, synchronous motors provide precise speed control and efficiency, and permanent magnet motors deliver compactness and energy savings. By understanding the characteristics and capabilities of each motor type, engineers can design and optimize industrial water systems to meet

specific performance objectives while ensuring reliability, efficiency, and sustainability.

Pumps are essential devices used across various industries to move fluids by mechanical action. They can be categorized into two primary types: dynamic and positive displacement pumps. Each type has distinct mechanisms, advantages, and applications, suited to specific requirements in various sectors.

Dynamic pumps, also known as kinetic pumps, operate by imparting velocity to the fluid, which is then converted into pressure. The main subtypes include centrifugal and axial flow pumps.

Centrifugal Pumps: These pumps use a rotating impeller to add velocity to the fluid. The kinetic energy is then transformed into pressure energy. They are widely used for water supply, chemical processing, and wastewater treatment due to their ability to handle high flow rates at low pressures. Centrifugal pumps can be further categorized into:

Axial Flow Pumps: Suitable for high flow and low head applications, commonly used in flood dewatering and irrigation.

Radial Flow Pumps: Often employed in water supply systems, offering moderate head and flow capabilities [1].

Mixed Flow Pumps: These combine features of axial and radial flow pumps, used in applications requiring both significant flow and head.

Axial Flow Pumps: These pumps move fluid parallel to the pump shaft. They are typically used in applications that require high flow rates and low pressures, such as in power plants and flood control systems.

Positive displacement pumps move fluid by trapping a fixed amount and forcing (displacing) that trapped volume into the discharge pipe. They are typically used for high-pressure, low-flow applications.

Reciprocating Pumps: These pumps use a piston or plunger to displace the fluid. They are suitable for applications requiring precise flow control, such as in hydraulic systems and chemical injection. Reciprocating pumps are categorized into piston, plunger, and diaphragm pumps. They are commonly used in high-pressure applications like oil drilling and steam generation [2].

Rotary Pumps: These pumps move fluid using the rotation of gears, screws, or vanes. They are well-suited for pumping viscous fluids and are widely used in lubrication systems, chemical processing, and food industries. Examples include gear pumps, screw pumps, and lobe pumps [3].

Diaphragm Pumps: These are a type of positive displacement pump where a diaphragm moves back and forth to displace the fluid. They are ideal for applications where the fluid must be isolated from the moving parts, such as in chemical processing and pharmaceuticals [4].

Water Supply and Wastewater Management: Centrifugal pumps are predominantly used due to their efficiency in handling large volumes of water at relatively low pressures. Submersible pumps and vertical turbine pumps are often used for deep well water extraction and municipal water supply [5].

Fire Protection: Dynamic pumps, especially centrifugal pumps, are essential in fire protection systems for their ability to maintain steady water flow. Positive displacement pumps like rotary and reciprocating pumps are used to supply additives to enhance firefighting efforts [6].

Chemical Processing: The chemical industry relies heavily on various pump types to handle different chemicals

and process fluids. Diaphragm pumps are favored for their ability to handle corrosive fluids without leakage, while metering pumps are used for precise chemical dosing [2].

Oil and Gas Industry: Reciprocating pumps are used for high-pressure applications such as oil drilling and hydraulic fracturing. Rotary pumps, including gear and screw pumps, are used for transferring viscous fluids like crude oil and lubricants [4].

HVAC Systems: Centrifugal pumps are commonly used in heating, ventilation, and air conditioning (HVAC) systems to circulate water and other fluids. These pumps are crucial for maintaining the desired environmental conditions in buildings [2].

Pumps are vital components in numerous industrial applications, with each type offering specific benefits tailored to particular needs. Understanding the differences between dynamic and positive displacement pumps, along with their subtypes and applications, is crucial for selecting the right pump for any given task. Whether it's for water supply, fire protection, chemical processing, or HVAC systems, the appropriate pump selection ensures efficiency, reliability, and cost-effectiveness in fluid handling operations [7].

Optimizing Industrial Water Systems: Frequency Converters for Centrifugal Pumps

In industrial water systems, centrifugal pumps are the workhorses, responsible for moving fluids across vast distances and overcoming pressure differences. However, traditional control methods often lead to wasted energy and imprecise flow and pressure regulation. This is where frequency converters (also known as variable frequency drives or VFDs) come into play. By electronically adjusting the motor's operating frequency, VFDs offer a powerful solution for optimizing pump performance and achieving significant energy savings [8].

The Affinity Laws and Energy Consumption

Centrifugal pumps operate according to the Affinity Laws, a set of fundamental relationships between flow rate (Q), head (H), rotational speed (n), and power consumption (P):

$$\frac{Q_{var}}{Q_{nom}} = \frac{n_{var}}{n_{nom}}$$

Flow rate is proportional to rotational speed.

$$\frac{H_{var}}{H_{nom}} = \left(\frac{n_{var}}{n_{nom}} \right)^2$$

Head is proportional to the square of rotational speed.

$$\frac{P_{var}}{P_{nom}} = \left(\frac{n_{var}}{n_{nom}} \right)^3$$

Power consumption is proportional to the cube of rotational speed.

These laws highlight a crucial fact: a small reduction in pump speed (n) can lead to a significant decrease in power consumption (P) without compromising flow rate (Q) to a great extent. This is the essence of the energy-saving potential of frequency converters.

Traditional Throttling vs. VFD Control:

In the past, throttling valves were used to regulate flow and pressure in centrifugal pumps. However, this method has inherent drawbacks:

- Energy Waste:** Throttling dissipates energy as heat, essentially consuming power without achieving useful work.

- Inaccurate Control: Throttling valves offer limited control granularity, leading to imprecise flow and pressure regulation.

VFDs and Efficient Pump Operation:

Frequency converters offer a superior alternative by directly controlling the motor's rotational speed. By adjusting the frequency (f) of the power supply to the motor, VFDs can precisely regulate the pump's speed according to the relationship:

$$n = \frac{60 \cdot f}{p}$$

(where p is the number of poles in the motor design)

This allows for:

- Reducing Energy Consumption: By operating the pump at the optimal speed required for the desired flow rate, VFDs significantly reduce energy consumption according to the cube law relationship ($P \propto n^3$). Studies show potential energy savings of up to 50% compared to throttling control.
- Precise Flow and Pressure Regulation: VFDs offer a wider range of control and faster response times compared to valves. This allows for precise matching of flow and pressure requirements (as described by the Affinity Laws), leading to improved system efficiency.
- Beyond Energy Savings: Additional Benefits of VFDs
- The advantages of VFDs extend beyond energy savings:
- Reduced Wear and Tear: Lower operating speeds translate to less stress on the pump components (bearings, shaft), leading to extended equipment life and reduced maintenance costs.
- Soft Starts and Stops: VFDs provide smooth motor starts and stops by controlling the rate of change of frequency (df/dt), minimizing mechanical stress on the pump and piping system.
- Improved System Stability: Precise flow and pressure control contribute to a more stable and predictable system operation, reducing pressure fluctuations and improving overall system performance [9].

VFD Operation: Inside the Drive

A VFD functions by manipulating the power supply delivered to the AC induction motor. Here's a breakdown of the key components:

- Rectifier: Converts incoming AC power to DC voltage. Described by the formula:

$$V_{dc} = V_m \cdot \sqrt{2}$$
- (where V_{dc} is the DC output voltage, V_m is the phase voltage of the AC input)
- DC Bus: Stores the rectified DC voltage.
- Inverter: Converts the DC voltage back to AC voltage, but with variable frequency and voltage.
- Control Unit: Analyzes system parameters (flow, pressure) and user commands to adjust the inverter's output frequency and voltage.
- By controlling the output frequency of the inverter, the VFD regulates the speed of the motor. Additionally, the VFD may adjust the output voltage (V) to maintain a constant motor voltage/frequency (V/f) ratio at varying speeds, ensuring proper motor torque and efficient operation. This relationship can be expressed as:

$$V/f = \text{constant}$$
 (adjusted based on motor characteristics)

Practical Considerations for Implementing VFDs
While VFDs offer numerous benefits, successful implementation requires careful planning and consideration of several factors:

- System Analysis: A thorough analysis of the pump system is crucial. This includes:

- Flow Rate and Pressure Requirements: Understanding the desired operating range for flow (Q) and pressure (H) is essential for selecting the appropriate VFD and configuring its settings.

- Pump Selection: The pump's design curve and efficiency characteristics should be evaluated to ensure compatibility with the VFD's operating range. Affinity Laws provide a mathematical framework for relating these parameters: (Motor Compatibility: The existing motor's voltage, power rating, and control type need to be compatible with the chosen VFD) We already established these formulas earlier [10].

- VFD Selection: Selecting the right VFD requires considering:

 Horsepower Rating: The VFD's horsepower rating should match or exceed the motor's rating to ensure it can handle the required load.

 Input and Output Voltage: The VFD's input voltage should match the system's supply voltage, and the output voltage should be compatible with the motor's voltage rating for proper operation.

- Control Features: Different VFDs offer varying functionalities like:

 Programmable logic controllers (PLCs) for advanced control and automation, allowing for integration with existing control systems.

 Sensor inputs for monitoring parameters like flow, pressure, and temperature, enabling real-time feedback and adjustments.

 Installation and Commissioning: Proper installation of the VFD is essential, following manufacturer's recommendations for wiring, grounding, and safety precautions. Commissioning involves configuring the VFD parameters based on the system analysis and pump characteristics. This may involve setting:

- Ramp Rates: Setting acceleration and deceleration times (t) for smooth motor starts and stops to minimize mechanical stress. These ramp rates can be calculated based on the inertia (J) of the rotating components and the desired torque (T):

$$t = \frac{(J \cdot \Delta n)}{T},$$

- Maximum Frequency: Limiting the motor's speed (n) to stay within the pump's safe operating range according to the pump's design curve to prevent damage.

- Control Modes: Selecting the appropriate control mode (e.g., pressure control, flow control) based on system requirements. VFDs can be programmed to maintain a constant pressure output (H) by adjusting the pump speed (n) based on real-time pressure sensor readings. Similarly, flow control modes can be implemented to regulate flow rate (Q).

- Monitoring and Maintenance: Regularly monitoring VFD performance parameters like output frequency, motor current, and fault codes is crucial for preventive maintenance. This ensures optimal operation and early detection of potential issues like failing bearings or overheating, allowing for timely corrective actions and avoiding costly downtime.

By leveraging the scientific principles of the Affinity Laws and the technological prowess of VFDs, industrial water systems can achieve significant energy savings (up to 50% compared to throttling control), improved flow and

pressure control, and extended equipment life. A thorough understanding of VFD operation, careful system analysis that considers pump characteristics and desired operating points, and proper implementation are key factors for reaping these benefits. As industries strive for sustainability and operational efficiency, VFDs will continue to be a powerful tool for optimizing the performance of centrifugal pumps in water systems [11].

To analyze this system, we will create a model in the Simulink package.

Model Components:

- Three-Phase Voltage Source: This block represents the AC power supply for the VFD. You'll need to specify the voltage (e.g., 480V) and frequency (e.g., 60 Hz) based on your system.
- Frequency Converter (VFD): This block can be a pre-built library block from Simulink (e.g., Voltage Source PWM) or a custom block you create using power electronics components like rectifiers, inverters, and control logic. The control logic should adjust the inverter's output frequency based on a reference signal.
- Centrifugal Pump: This block can be a simple model relating pump speed (*RPM*) to flow rate (m^3/s) and head (pressure, meters) based on the Affinity Laws. You can define this relationship using mathematical equations or lookup tables based on a specific pump model's performance data.
- Inertia Block: This block represents the inertia of the rotating parts (motor and pump impeller) and helps simulate the dynamic behavior of the system during speed changes.
- Control System (Optional): You can add a control system block to regulate the pump's operating point (flow and pressure) by providing a reference signal to the VFD. This could involve a PI (Proportional-Integral) controller that compares the measured pressure (from a pressure sensor block) with the desired pressure and adjusts the VFD's reference frequency accordingly.
- Measurement Blocks: Include blocks to measure relevant parameters like motor speed (*RPM*), flow rate (m^3/s), and pressure (meters) at desired locations in the model.
- Analysis Considerations:
- Steady-State Analysis: Run simulations at different VFD reference frequencies to observe the corresponding changes in pump speed, flow rate, and pressure. This helps verify the implementation of the Affinity Laws in the model.
- Transient Analysis: Simulate scenarios with varying flow demands or pressure disturbances. Observe how the control system (if implemented) reacts to these changes and how the pump speed adjusts to maintain the desired operating point. Analyze the rise and fall times of the pump speed to assess the impact on the system dynamics.
- Energy Consumption Analysis: Include a block to calculate the motor's power consumption based on motor speed and efficiency data. Compare the power consumption at different operating points to evaluate the potential energy savings achieved by using a VFD for speed control compared to a throttling valve [12].

Simulink Model Development:

While I cannot create the complete Simulink model here due to software limitations, the above description provides a

roadmap for building it. Each block can be configured with its specific parameters, and connections can be established between them to represent the physical system. You can utilize built-in Simulink functionalities like scopes and data logging to visualize and analyze the simulation results [13].

Additional Considerations:

The complexity of the model can be adjusted based on the desired level of detail. Simpler models may focus on steady-state analysis, while more complex models can incorporate detailed motor and pump dynamics for transient analysis.

Real-world pump data, motor efficiency curves, and control system algorithms can be integrated into the model for a more accurate representation of the actual system.

By building and analyzing a Simulink model of a VFD-controlled centrifugal pump system, you can gain valuable insights into the system's behavior, optimize control strategies, and evaluate the potential benefits of using VFDs for energy savings and improved flow and pressure control in industrial water systems [14].

The provided Simulink models represent a comprehensive Variable Frequency Drive (VFD) system. A VFD is an essential component in industrial applications, providing precise control of motor speed and torque by varying the frequency and voltage supplied to an electric motor. This analysis aims to dissect and explain the components and operation of the depicted VFD models.

Model Breakdown

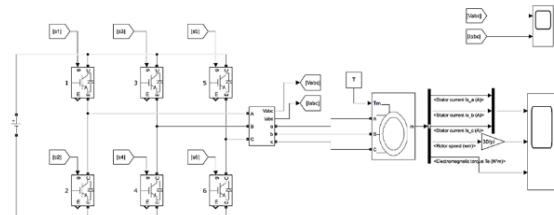


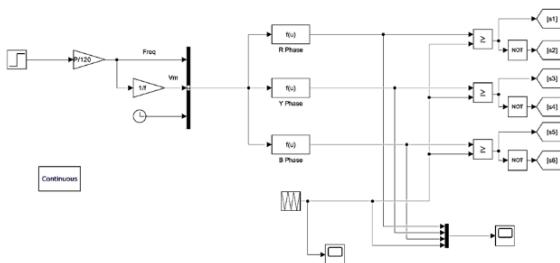
Figure 1. Inverter and Motor Control

1. Inverter Module:

The first figure showcases the inverter module, which consists of six Insulated Gate Bipolar Transistors (IGBTs) labeled *S1* through *S6*. These transistors are arranged in a three-phase bridge configuration.

Each IGBT is connected to a free-wheeling diode, allowing for current flow in the opposite direction when the IGBT is off, thereby protecting the transistors from voltage spikes.

2. Gate Signals:


Gate signals for the IGBTs (*S1-S6*) are provided by a control circuit. The timing of these signals is crucial as it determines the output voltage and frequency supplied to the motor.

3. Three-Phase Output:

The inverter outputs three-phase voltages (V_{abc}) and currents (I_{abc}) to the motor. These are labeled as *A*, *B*, and *C* phases.

4. Motor Model:

The motor model takes in these three-phase inputs and provides outputs such as stator currents (i_{s_a} , i_{s_b} , i_{s_c}), rotor speed (w_m), and electromagnetic torque (T_e). These parameters are essential for monitoring and control purposes.

Figure 2. Control Circuit

1. Frequency and Voltage Control:
 - o The second figure depicts the control circuit, which determines the frequency ($Freq$) and magnitude (V_m) of the output voltage.
 - o A reference signal is divided by 120 to provide the base frequency, and another block calculates the inverse of this frequency to control the voltage.
2. Phase Generation:
 - o The control system generates three phase signals (R Phase, Y Phase, B Phase) which correspond to the reference voltage (V_{abc}) and current (I_{abc}) inputs. These phases are used to generate the PWM (Pulse Width Modulation) signals required for controlling the IGBT gates.
3. PWM Generation and Logic:
 - o Each phase is passed through a function block ($f(u)$), which calculates the necessary PWM signals.
 - o The NOT gates are used to ensure that complementary signals are generated for each pair of IGBTs in a phase leg (e.g., S1 and S2, S3 and S4, S5 and S6). This complementary operation ensures that when one IGBT is on, the other is off, and vice versa.
4. Pulse Generator and Power GUI:
 - o A pulse generator block sets the switching frequency for the PWM signals.
 - o The powergui block is used for simulation purposes, enabling the model to run continuous or discrete simulations based on the control strategy.

Functional Analysis

Inverter Operation

The inverter converts DC voltage from a source into a three-phase AC output. The gate signals to the IGBTs are modulated to produce a sinusoidal output at the desired frequency and voltage. This is achieved using PWM techniques, where the width of the pulses is varied to control the effective voltage and frequency.

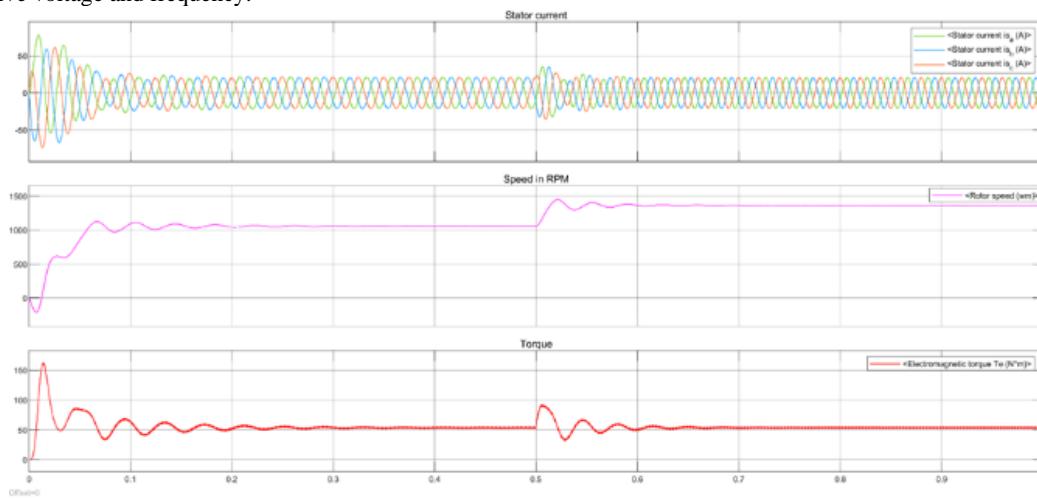
Motor Control

The motor model simulates the behavior of an AC motor under varying conditions of voltage and frequency. By adjusting the frequency and voltage supplied to the motor, the speed and torque can be precisely controlled. This is particularly useful in applications requiring variable speed control, such as conveyors, fans, and pumps.

Feedback and Monitoring

The feedback signals (stator currents, rotor speed, and torque) are critical for closed-loop control. These signals can be used to adjust the PWM signals dynamically to maintain desired motor performance. For instance, if the rotor speed deviates from the setpoint, the control system can adjust the frequency to bring the speed back to the desired value.

Applications


VFDs are widely used in various industrial and commercial applications, including:

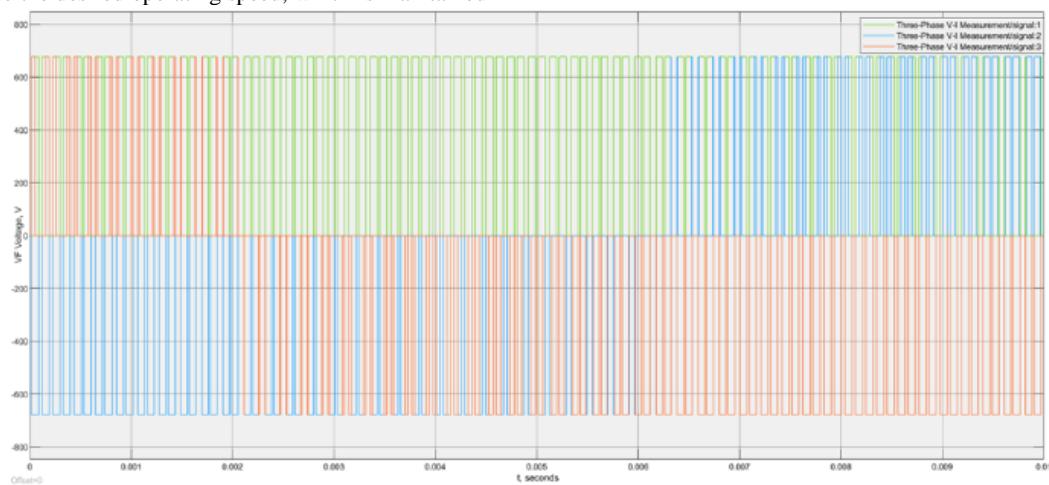
- HVAC Systems: Controlling the speed of fans and pumps to save energy and maintain desired environmental conditions.
- Manufacturing: Providing precise motor control for machinery and automation systems.
- Renewable Energy: Integrating with wind turbines and solar panels to optimize energy conversion and storage.
- Transportation: Used in electric vehicles and railway systems to control motor speed and improve efficiency.

The Simulink models presented provide a detailed and functional representation of a Variable Frequency Drive system. By controlling the frequency and voltage supplied to an AC motor, the VFD achieves precise control of motor speed and torque, which is essential for a wide range of industrial applications. The combination of inverter circuitry, control logic, and feedback mechanisms ensures efficient and reliable motor operation, making VFDs a vital component in modern automation and control systems.

3. Results and Discussion

The simulation results from the Simulink model provide a detailed analysis of the performance and efficiency of the Variable Frequency Drive (VFD) system applied to industrial water pumps. Below is a summary of the key findings illustrated by the provided figures.

Figure 3. Motor currents, speed and torque


The simulation displays the motor's stator currents, rotor speed, and electromagnetic torque.

Stator Currents: The currents in the stator windings demonstrate a sinusoidal pattern, indicating smooth operation under the control of the VFD.

Rotor Speed: The rotor speed plot shows a steady increase to the desired operating speed, which is maintained

throughout the simulation. This illustrates the VFD's ability to achieve and hold precise motor speed control.

Electromagnetic Torque: The torque plot highlights the motor's response to load variations. The VFD provides smooth torque control, reducing mechanical stress on the system.

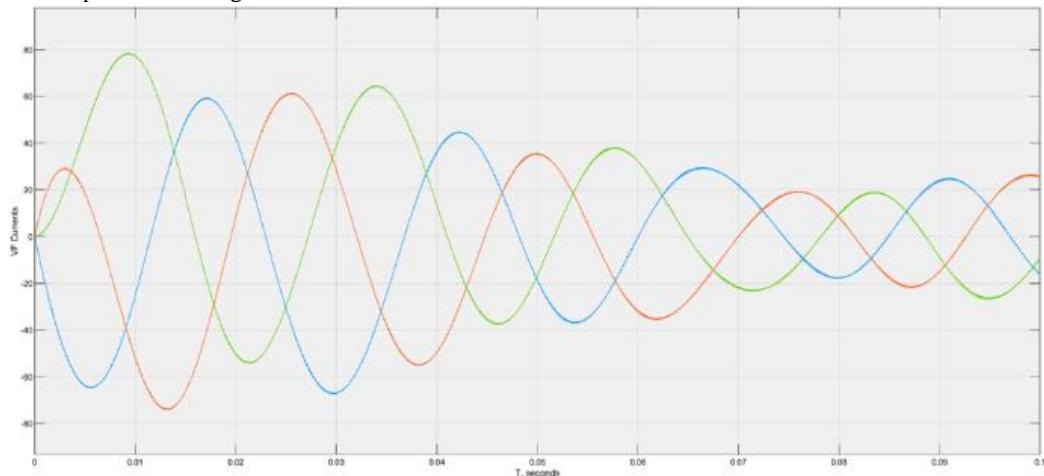


Figure 4. Three phase voltage from variable frequency

This figure shows the output voltages from the VFD to the motor:

Voltage Waveforms: The waveforms are sinusoidal, confirming the VFD's effective modulation of the input DC voltage into three-phase AC voltages.

Frequency Control: The frequency of these waveforms is varied according to the desired motor speed, demonstrating the VFD's capability to adjust frequency in real-time for precise control.

Figure 5. Variable frequency circuit currents

The currents in the variable frequency circuit reflect the behavior of the VFD components:

Current Modulation: The figure illustrates how the VFD adjusts the current supplied to the motor to match the required load conditions.

Energy Efficiency: The reduction in current at lower frequencies indicates decreased power consumption, validating the energy-saving potential of VFDs as theorized by the Affinity Laws.

The results from the Simulink model confirm the theoretical benefits of implementing VFDs in industrial water pump systems.

Energy Efficiency: The simulation shows that VFDs significantly reduce energy consumption by controlling motor speed and thereby reducing power usage. This aligns with the cube law relationship ($P \propto N^3$) of the Affinity

Laws, which predicts substantial energy savings with even small reductions in speed.

Precise Control: The VFD provides precise control over motor speed and torque. This precise regulation is crucial for maintaining optimal performance in industrial water systems, ensuring that pumps operate efficiently under varying load conditions.

Reduced Mechanical Stress: The smooth start-up and shutdown capabilities of VFDs, as demonstrated in the torque and speed plots, reduce mechanical wear and tear on pumps, leading to longer equipment life and lower maintenance costs.

System Stability: The VFD enhances system stability by minimizing pressure fluctuations and ensuring a consistent flow rate, which is vital for industrial processes that rely on steady water supply.

Cost-Effectiveness: While the initial investment in VFD technology can be high, the long-term savings in energy costs and maintenance justify the expenditure. The simulation results highlight the potential for significant operational cost reductions through improved energy efficiency and equipment longevity.

4. Conclusion

The application of VFDs in industrial pump systems offers substantial benefits in terms of energy efficiency, precise control, reduced mechanical stress, and system stability. The simulation results validate the theoretical advantages, showcasing the potential for significant improvements in operational efficiency and cost-effectiveness.

By leveraging VFD technology, industrial enterprises can achieve greater sustainability and competitiveness in their operations. The adoption of such advanced control systems represents a pivotal step towards optimizing energy usage and enhancing the overall performance of industrial water supply systems.

For future research, it would be beneficial to explore the long-term impacts of VFDs on pump durability and to conduct field trials to further validate the simulation results under real-world conditions. Additionally, integrating advanced control algorithms and real-time monitoring systems could further enhance the efficiency and reliability of VFD-equipped pump systems.

References

- [1] Gülich. J.F., “Centrifugal Pumps”, 3rd ed, Springer Berlin, Heidelberg, 2019, pp 1-1116.
- [2] Rayner J. M., “Pumps and Pumping”, CRC Press, 1995, pp 1-450.
- [3] Forsthoffer W. E., “Forsthoffer's Rotating Equipment Handbooks: Reliability Optimization through Component Condition Monitoring and Root Cause Analysis”, Elsevier, 2005, pp 278-320.
- [4] Parker R., “The Diaphragm Pump Manual”, Elsevier, 1994, pp 1-362.
- [5] Garbus J., Ross R., Weiss S., “Water Supply Systems and Evaluation Methods”, Federal Emergency Management Agency, 2008, pp 1-135.

[6] Nolan D. P., “Fire Pump Arrangements at Industrial Facilities”, Gulf Professional Publishing, 1998, pp 1-510.

[7] Pirmatov, N., Xaydarov, X., Abduraxmonov, S., Sayitov, S. “Energy saving using a frequency converter in asynchronous motor operating modes”, In E3S Web of Conferences (2024, November) (Vol. 508, p. 08011). EDP Sciences. DOI 10.1051/e3sconf/202450808011

[8] Xaydarov X., Qarshiyev K., Berdiyorov U., “Energy saving using a frequency converter in asynchronous motor operating modes”, In AIP Conference Proceedings (Vol. 3152, No. 1). (2024, June). AIP Publishing. <https://pubs.aip.org/aip/acp/issue/3152/1>

[9] Pirmatov N.B., Matqosimov M., Mahamadjonov S., Xaydarov X., “Characteristics of the static and dynamic operating modes of the asynchronous generator in renewable energy sources and the production of electric energy control through a frequency converter”, E3S Web Conf., 480 (2024) 01007. DOI: <https://doi.org/10.1051/e3sconf/202448001007>.

[10] Pirmatov N.B., Xaydarov X.M., “Investigating the issues of energy saving by means of a mathematical model of transient processes of asynchronous engines in pump units” “Science and innovative development” International scientific-technical journal, vol (3), no. 1, pp. 63-71, 2023. DOI <https://dx.doi.org/10.36522/2181-9637-2023-5-7>.

Information about the author

Ishnazarov Oybek Khayrlaevich	Deputy Director for Science of the Institute of Energy Problems of the Academy of Sciences of the Republic of Uzbekistan Tel.: +998 90 986 80 67 https://orcid.org/0000-0003-3580-9793
Khaydarov Khumoyun Mukhtor ugli	Doctoral student of the Department of “Electrical Engineering, Electromechanics, Electrotechnology” of the Andijan Mechanical Engineering Institute E-mail: humoyun1991@gmail.com Tel.: +998 93 786 55 57 https://orcid.org/0000-0002-9314-0568

O. Ishnazarov, Kh. Khaydarov <i>Enhancing energy efficiency in industrial pump units: the role of asynchronous motors with frequency converters</i>	7
Sh. Ismoilov <i>Functions of the Operation of Continuous Automatic Locomotive Signaling in Rail Transport (ALSN)</i>	15
N. Aripov, Sh. Ismoilov <i>Features of the effect of increased reverse traction currents on rail circuits and continuous automatic locomotive signaling</i>	18
S. Absattarov, N. Tursunov <i>The influence of the chemical composition, including harmful and undesirable impurities, on the properties of spring steels</i>	21
K. Azizov, A. Beketov <i>Analysis of existing methods for measurement of air pollution in road areas</i>	24
D. Odilov <i>The practical importance of the Maple software</i>	28
I. Umirov <i>Program evaluation of the enterprise exploitation service process</i>	31
R. Saydakhmedov, O. Rustamov <i>Increasing the role of titanium alloys in the aviation industry: problems and solutions</i>	34
I. Normatov <i>Bibliometric analysis of improving the performance system of human</i>	37
T. Kurbaniyazov, A. Bazarbaev <i>Modeling the processes of conversion of asymmetrical three-phase currents into output voltage</i>	40
K. Azizov, A. Beketov <i>Traffic flow characteristics and their impact on air pollution in urban streets: a case study of Tashkent</i>	43
M. Ergashova, Sh. Khalimova, A. Normukhammadov <i>State control in monitoring the greening of city roads and streets</i>	46
O. Khushvaktov, Sh. Khalimova <i>Traffic flow velocity analysis on urban roads: a study of Uzbekistan's key transportation route</i>	49
Z. Alimova, S. Pulatov <i>Performance analysis of motor oil quality in heavily loaded engines of quarry vehicles</i>	53
M. Umarova <i>Impact of the greened area of the enterprise on the safety of workers</i>	58
D. Nazhenov, M. Masharipov, B. Rustamjonov, O. Pokrovskaya <i>The impact of attracting an additional shunting locomotive to railway technical stations on the utilization indicators of rolling stock</i>	61
Sh. Kayumov, A. Bashirova <i>Improvement of the technology for determining the time spent on cleaning gondola cars</i>	64