

# ENGINEER



international scientific journal

## SPECIAL ISSUE

E-ISSN

3030-3893

ISSN

3060-5172



A bridge between science and innovation



**TOSHKENT DAVLAT  
TRANSPORT UNIVERSITETI**  
Tashkent state  
transport university



# **ENGINEER**

**A bridge between science and innovation**

**E-ISSN: 3030-3893**

**ISSN: 3060-5172**

**SPECIAL ISSUE**

**16-iyun, 2025**



[engineer.tstu.uz](http://engineer.tstu.uz)

**“QURILISHDA YASHIL IQTISODIYOT, SUV VA ATROF-MUHITNI ASRASH TENDENSIYALARI, EKOLOGIK MUAMMOLAR VA INNOVATSION YECHIMLAR” MAVZUSIDAGI RESPUBLIKA MIQYOSIDAGI ILMIY-AMALIY KONFERENSIYA TASHKILIY QO‘MITASI**

1. Abdurahmonov O.K. – O‘zbekiston Respublikasi Prezidenti Administratsiyasi ijtimoiy rivojlantirish departamenti rahbari, Toshkent davlat transport universiteti rektori
2. Gulamov A.A – Toshkent davlat transport universiteti prorektori
3. Shaumarov S.S – Toshkent davlat transport universiteti prorektori
4. Suvonqulov A.X. – O‘zsuvta’minoti AJ raisi
5. Xamzayev A.X. – O‘zbekiston ekologik partiyasi raisi
6. Maksumov N.E. – O‘zbekiston Respublikasi Vazirlar Mahkamasi huzuridagi Qurilish va uy-joy kommunal xo‘jaligi sohasida nazorat qilish inspeksiyasi boshlig‘i o‘rinbosari
7. Baratov D.X. – Toshkent davlat transport universiteti prorektori
8. Turayev B. X – Toshkent davlat transport universiteti prorektori
9. Norkulov S.T. – Toshkent davlat transport universiteti prorektori
10. Adilxodjayev A.E. – Universitedagi istiqbolli va strategik vazifalarni amalga oshirish masalalari bo‘yicha rektor maslahatchisi
11. Negmatov S.S. – “Fan va taraqqiyot” DUK ilmiy rahbari, O‘zbekiston Respublikasi Fanlar Akademiyasi Akademigi
12. Abed N.S. – “Fan va taraqqiyot” DUK raisi
13. Merganov A.M – Ilmiy tadqiqotlar, innovatsiyalar va ilmiy-pedagogik kadrlar tayyorlash bo‘limi boshlig‘i
14. Ibadullayev A. – Muhandislik kommunikatsiyalari va tizimlari kafedrasi professori
15. Rizayev A. N. – Muhandislik kommunikatsiyalari va tizimlari kafedrasi professori
16. Xalilova R.X. – Muhandislik kommunikatsiyalari va tizimlari kafedrasi professori
17. Babayev A.R. – “Qurilish muhandisligi” fakulteti dekani
18. Boboxodjayev R.X – Tahririy nashriyot va poligrafiya bo‘limi boshlig‘i
19. Talipov M.M – Ilmiy nashrlar bilan ishslash bo‘limi boshlig‘i
20. Maxamadjonova Sh.I. - Matbuot xizmati kontent-menedjeri
21. Umarov U.V. – Muhandislik kommunikatsiyalari va tizimlari kafedrasi mudiri
22. Eshmamatova D.B. – Oliy matematika kafedrasi mudiri
23. Muxammadiyev N.R. – Bino va sanoat inshootlari qurilishi kafedrasi mudiri
24. Tursunov N.Q. – Materialshunoslik va mashinasozlik kafedrasi mudiri
25. Shermuxammedov U.Z. – Ko‘priklar va tonnellar kafedrasi mudiri
26. Lesov Q.S. – Temir yo‘l muhandisligi kafedrasi mudiri
27. Pirnazarov G‘.F. – Amaliy mehanika kafedrasi mudiri
28. Teshabayeva E.U. – Tabiiy fanlar kafedrasi professori
29. Chorshanbiyev Umar Ravshan o‘g‘li – Muhandislik kommunikatsiyalari va tizimlari kafedrasi dotsent v.b.
30. Obidjonov Axror Jo‘raboy o‘g‘li – Muhandislik kommunikatsiyalari va tizimlari kafedrasi assistenti

## The maintenance of rails is a minor factor contributing to the extension of the service life of the railway track

A.S. Islomov<sup>1</sup>

<sup>1</sup>Tashkent State Transport University, Tashkent, Uzbekistan

Abstract:

This article discusses the defects that arise in rails, which are one of the main components of railway infrastructure, and their current maintenance. All measures related to the maintenance of railways are primarily aimed at improving the interaction between the rolling stock and the track. Irregularities in the track cause vertical and horizontal dynamic forces, which in turn increase the impact transmitted from the vehicle to the track and lead to the accumulation of residual deformations. This necessitates regular correction of the track in both the longitudinal and transverse profiles. In this regard, studying the rails and their operating conditions is considered a highly relevant issue. Today, many innovations and opportunities are being introduced in the transport sector of our country. Therefore, conducting scientific research using modern methodologies and reliable scientific foundations is highly appropriate. This article presents the scientific basis for the maintenance methods of rail defects.

Keywords:

defect, rail, deformation, elasticity, alignment, radius, curvature, deterioration, rail head, longitudinal, vertical.

### 1. Introduction

Railway infrastructure is one of the main sectors of transport in the road economy. The road economy includes all railway facilities and production enterprises. The road economy accounts for more than half of the value of the main railway assets, operating expenses, and one-fifth of the workforce. Key priorities in the road economy include improving the management system, increasing the efficiency of mechanization during loading and unloading, expanding the use of heavy-duty machinery, and ensuring proportional labor costs in routine maintenance and repair works. The railway is a complex engineering structure operating under challenging conditions. Heavy trains travel at high speeds along the railway. The wheels exert a force of 100-115 kN on the rails, which can increase by 1.5 to 2 times during movement. Irregularities in the rails and wheels, as well as deviations from maintenance standards, cause the horizontal and vertical forces acting on the rails to fluctuate rapidly over time. These forces result in various residual deformations on the railway.

Additionally, climatic changes such as snow, wind, water, and temperature also affect the railway.

Therefore, conditions must be met to ensure safe operation of the railway and resistance to various forces and natural changes. It is essential to keep the railway constantly in a proper state. These issues are addressed by organizing high-quality routine maintenance and repair of the railway.

### 2. Research methodology

A significant amount of resources and materials are required for the production of rails. Therefore, even a slight extension of the service life of rails yields considerable benefits on a national scale. The service life of rails depends on several factors: the total gross tonnage transported over the railway, the speed of train movement, the type of traction, and the quality of the rails themselves. As a key indicator of rail service life, the total gross tonnage carried over the rails is commonly used.

The operating conditions of the rails have a substantial impact on their longevity. If the gap at the joints exceeds the

standard value, the repeated impact of wheel flanges against the rail ends increases, leading to localized deformation. As a result, depressions form at the joints, contributing to defects such as 17.1, 18.1, and 53.1. Therefore, during track inspection, close attention must be paid to ensure that rail joint gaps remain within the prescribed limits.

Settlements at the rail joints, suspended rail ends, and missing or damaged rail pads significantly worsen operating conditions. To improve the performance of rails, it is essential to ensure stable support along their entire length by securing them firmly to the sleepers. This is achieved by consistent tamping of sleepers, compacting the ballast, and ensuring reliable fastening to prevent longitudinal displacement.

Depressions and suspended rails at joints must be promptly and properly eliminated. Worn-out rail pads are replaced, and all bolts at joints are tightly fastened.

Overlay welding to repair worn joint sections and fastenings can significantly extend the rail service life. If vertical wear on the rail does not exceed 1–3 mm on main or arrival/departure tracks, overlay repair is permitted.

The elevation of the outer rail must be regularly monitored and maintained. Deviations from the norm lead to uneven rail wear: on the inner rail, head deformation occurs (defect 43), while on the outer rail, lateral and vertical wear intensifies (defect 44). On curves with a small radius, lateral wear on the outer rail increases rapidly. To reduce this, lubrication of the inner side of the outer rail is widely practiced. Graphite grease is commonly used, which significantly slows down the wear rate of both rails and wheel flanges, thereby extending their service life. Rail lubricators are installed on curves where lateral wear exceeds 2–3 mm after passing 100 million gross tons of traffic. Lubrication is not required year-round and is typically performed in the summer months. This measure reduces lateral rail wear rates by a factor of 4–5.

During rail installation or individual replacement, it is critical to ensure that the rail base does not rest on the edge of the baseplate, which could cause rail breakage. To prevent cracking in the rail web or at the base of the rail head, rail fastenings must fit tightly. Any fastenings that do not meet this requirement should be replaced immediately. The conditions of loading, transporting, and unloading rails also



influence their service life. These operations must be carried out using lifting equipment. Dropping rails or hammering them into place is strictly prohibited. When stacking rails, supports should be placed every 1.5 meters, and used sleepers may be employed for this purpose.

Welding any wires or plates to the rail base or web is strictly prohibited. Rail joint welding must only be conducted at positive temperatures ( $+5^{\circ}\text{C}$  and above). If the rail temperature is between  $+5^{\circ}\text{C}$  and  $-10^{\circ}\text{C}$ , the rail ends (150 mm on both sides) must be preheated to  $150\text{--}200^{\circ}\text{C}$  before welding. Welding is strictly forbidden when rail temperature is below  $-10^{\circ}\text{C}$ .

Defects arising from violations of manufacturing technology, poor-quality metallurgy or heat treatment, and improper rail maintenance contribute significantly to the degradation of rails during operation.

Depending on the type of defects, rails can be classified as defective or severely defective. The descriptions of defective and severely defective rails are provided in the railway maintenance guidelines. Rails with wear exceeding the specified limits are also classified as defective. In this context, the concept of total wear is used.

The total wear of a rail is defined as the sum of the vertical wear and half of the lateral wear of the rail head (see Table 1).

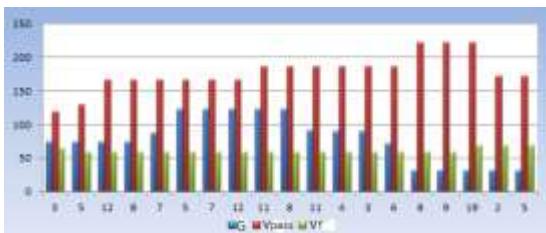
**Table 1**  
The permissible limits of rail wear, measured in millimeters (mm).

| №   | Rail Maintenance Tracks and Manifestations of Rail Wear                                                                                                                | R75, R65 | R50 | R43 |  |
|-----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|-----|-----|--|
| 1   | Total Wear (mm)                                                                                                                                                        |          |     |     |  |
| 1.1 | Main lines with passenger train speeds of $120\text{--}140 \text{ km/h}$                                                                                               | 9        | 7   | -   |  |
| 1.2 | Main lines with freight transport intensity $\geq 10 \text{ mln t-km/year}$ and freight train speeds $\leq 120 \text{ km/h}$                                           | 12       | 10  | 8   |  |
| 1.3 | Main lines with freight transport intensity $< 10 \text{ mln t-km/year}$ and receiving-dispatch lines with freight transport intensity $\geq 10 \text{ mln t-km/year}$ | 16       | 13  | 9   |  |
| 1.4 | Other receiving-dispatch lines                                                                                                                                         | 20       | 16  | 12  |  |
| 1.5 | Other station tracks                                                                                                                                                   | -        | 19  | 15  |  |
| 2   | Rail head lateral wear (mm)                                                                                                                                            |          |     |     |  |
| 2.1 | Main lines with passenger train speeds of $120\text{--}140 \text{ km/h}$                                                                                               | 7        | 6   | -   |  |
| 2.2 | All main and receiving-dispatch lines with freight transport intensity $\geq 10 \text{ mln t-km/year}$                                                                 | 15       | 13  | 10  |  |
| 2.3 | Other receiving-dispatch lines                                                                                                                                         | 18       | 16  | 13  |  |
| 2.4 | Other station tracks                                                                                                                                                   | -        | 18  | 15  |  |

Transverse fractures and broken rail heads prohibit the passage of trains on the affected rails.

Until preparations are made to replace cracked rails, it is permitted to allow trains to pass over them at a reduced speed of no more than  $25 \text{ km/h}$ . The schedule for train passage is

determined by the track brigade chief.


The passage of trains over rails with cracks located in tunnels and on bridges is strictly prohibited under any circumstances.

During the rail replacement process, environmental temperature must be taken into account, since at positive temperatures rails may be pushed into the free space, while at negative temperatures rails tend to move away in both directions. To evaluate the impact of freight and passenger trains on rails, the mixed-traffic railway line between Tashkent and Samarkand was examined. This allowed for the analysis of the quantity and severity of defects present on the line. The data is presented in Table 2 below.

**Table 2**  
Summary Data of the Tashkent–Samarkand High-Speed Line

| Stations                        | Section Length (km) | Avg. Transported Freight (mln t, gross) | Average Train Speed (km/h) |         | Number of Defects (units) |
|---------------------------------|---------------------|-----------------------------------------|----------------------------|---------|---------------------------|
|                                 |                     |                                         | Passenger                  | Freight |                           |
| L                               | G                   | $V_{pss}$                               | $V_f$                      | N       |                           |
| 1 Toshkent yo'l.-To'qimachi     | 4,43                | 74,3                                    | 120                        | 66      | 3                         |
| 2 To'qimachi – Toshkent janubiy | 2,07                | 74,3                                    | 130                        | 60      | 5                         |
| 3 Rahimova – O'rtaovul          | 8,72                | 74,3                                    | 167                        | 60      | 12                        |
| 4 O'rtaovul – O'zbekiston       | 4,28                | 74,3                                    | 167                        | 60      | 8                         |
| 5 O'zbekiston – Yangiyo'l       | 6,4                 | 87,8                                    | 167                        | 60      | 7                         |
| 6 Yangiyo'l - Navruz            | 8,2                 | 123,57                                  | 167                        | 60      | 5                         |
| 7 Navruz - Paxta                | 6,82                | 123,57                                  | 167                        | 60      | 7                         |
| 8 Paxta - Olmazor               | 4,49                | 123,57                                  | 167                        | 60      | 12                        |
| 9 Olmazor - Chinoz              | 9,27                | 123,57                                  | 187                        | 60      | 11                        |
| 10 Chinoz - Yangi Chinoz        | 6,14                | 123,57                                  | 187                        | 60      | 8                         |
| 11 Yangi Chinoz - Sirdaryo      | 12,43               | 91,57                                   | 187                        | 60      | 11                        |
| 12 Baxt - Oqoltin               | 12,11               | 90,1                                    | 187                        | 60      | 4                         |
| 13 Guliston - Boyaut            | 6,3                 | 90,1                                    | 187                        | 60      | 3                         |
| 15 Boyaut - Yangiyer            | 9,35                | 72,4                                    | 187                        | 60      | 6                         |
| 16 Yangiyer - Hovos             | 8,25                | 32,12                                   | 223                        | 60      | 8                         |
| 17 Hovos - Rzd.3                | 22,4                | 32,12                                   | 223                        | 60      | 9                         |
| 18 Рзд. 3 - Dashtabod           | 17,4                | 32,12                                   | 223                        | 70      | 19                        |
| 19 Dashtabod – Rzd.6            | 15,93               | 32,12                                   | 173                        | 70      | 2                         |
| 20 Rzd. 6 - Zarbdor             | 15,14               | 32,12                                   | 173                        | 70      | 5                         |

The above table provides an overview of both passenger and freight train operations. It shows the average operating speeds of trains and the volume of freight flow passing through each section. In addition, the number of defects identified on each segment is also indicated. Based on this data, we will construct a graph illustrating the relationship between freight volume and train speed.



**Fig. 1. Dependency graph of rail defects on passenger train speed ( $V_{pass}$ ), freight train speed ( $V_{freight}$ ), and total transported freight volume (G)**

### 3. Conclusions and suggestions

1. It is essential to develop a dedicated fastening system design for high-speed rail routes.

2. The strategy for introducing high-speed passenger train operations highlights the necessity of broadening the traditional concept of infrastructure readiness. This expanded approach includes not only general condition assessments but also the integration of key performance indicators such as train speed levels, the number of accelerated train movements, and the physical state of the rails. These factors are critical in ensuring safety, optimizing performance, and extending the service life of railway components under increased dynamic loads typical of high-speed traffic.

3. In order to minimize defects in track superstructures arising from the introduction of a specified volume of accelerated passenger train operations, it is essential to consider modern design principles of rail joints that are characteristic of the intensification of the transportation process. This intensification aims to increase the mass of freight trains and enhance the railway's freight traffic throughput capacity.

### References

- [1] Decree of the President of the Republic of Uzbekistan "On the Development Strategy of the new Uzbekistan for 2022-2026" dated January 28, 2022 No. PF-60.
- [2] Правила технической эксплуатации железной дороги РУз. Утв. Узгосжелдорнадзором от 13.08.01 г. Т.: ОАО «Темирйулчи», 2001.
- [3] Инструкция по сигнализации на железных дорогах РУз. Утв. Узгосжидорнадзором 31.10.01 г. Т.: ОАО «Темирйулчи», 2001.
- [4] DJABBAROV S., ABDULLAEV K. Protection of transport structures in sandy deserts from moving sands //UNIVERSUM. – 2022. – С. 25-28.
- [5] Кахаров З.В., Исломов А.С. ОРГАНИЗАЦИЯ НАУЧНО-ИССЛЕДОВАТЕЛЬСКОЙ РАБОТЫ ОБУЧАЮЩИХСЯ // Вестник науки. 2023.
- [6] Джаббаров С. Т., Кодиров Н. Б. У. Исследование напряженно-деформированного состояния рельсов при увеличении осевой нагрузки //Universum: технические науки. – 2022. – №. 12-3 (105). – С. 34-39.
- [7] Джаббаров С. Т., Кодиров Н. Б. Анализ влияния динамической нагрузки колеса на рельсы условиях скоростного движения поездов в Узбекистане //Известия Петербургского университета путей сообщения. – 2023. – Т. 20. – №. 3. – С. 531-543.

### Information about authors

**Islomov Akbar Sadulloyevich** Base doctoral student, Tashkent State Transport University, e-mail: [islomovakbar9184@gmail.com](mailto:islomovakbar9184@gmail.com) (0000-0003-2811-2963)

|                                                                                                                                                                                           |            |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------|
| <b>V. Soy, J. Turgaev, N. Takhirzhanov</b>                                                                                                                                                |            |
| <i>Strength investigation of modified vermiculite concrete.....</i>                                                                                                                       | <b>142</b> |
| <b>N. Mukhammadiev, M. Mukhammadrasulov,</b>                                                                                                                                              |            |
| <b>D. Tursinaliev</b>                                                                                                                                                                     |            |
| <i>Flexible concrete (ECC) and its potential for sustainable construction in Uzbekistan .....</i>                                                                                         | <b>145</b> |
| <b>S. Komilov</b>                                                                                                                                                                         |            |
| <i>The main factors in determining optimal operating modes when compacting road foot grills with vibrating catocs .....</i>                                                               | <b>148</b> |
| <b>S. Komilov</b>                                                                                                                                                                         |            |
| <i>Method of detecting interaction parameters between the physical model valet and grunt.....</i>                                                                                         | <b>151</b> |
| <b>A. Abdusattarov, N. Ruzieva</b>                                                                                                                                                        |            |
| <i>Methodological approaches to the implementation of the calculation of shell pipelines beyond the limits of elasticity under cyclic loading .....</i>                                   | <b>154</b> |
| <b>G. Khalfin</b>                                                                                                                                                                         |            |
| <i>Current trends and innovative solutions in the construction sector .....</i>                                                                                                           | <b>161</b> |
| <b>U. Akishev, K. Lesov</b>                                                                                                                                                               |            |
| <i>Comprehensive assessment of the probability and severity of accidents at the mines of Donskoy gok using the Kinney method .....</i>                                                    | <b>164</b> |
| <b>G. Khalfin</b>                                                                                                                                                                         |            |
| <i>The introduction of the latest technologies and devices in the field of railway transport conditions.....</i>                                                                          | <b>168</b> |
| <b>A. Islomov</b>                                                                                                                                                                         |            |
| <i>The maintenance of rails is a minor factor contributing to the extension of the service life of the railway track.....</i>                                                             | <b>171</b> |
| <b>A. Islomov</b>                                                                                                                                                                         |            |
| <i>Impact of high-speed trains on the service life of the rails .....</i>                                                                                                                 | <b>174</b> |
| <b>A. Abdujabarov, M. Khamidov, M. Mekhmonov</b>                                                                                                                                          |            |
| <i>Study and mitigation measures for the effects of stresses and vibrodynamic forces on rails resulting from the movement of freight train wheels .....</i>                               | <b>177</b> |
| <b>I. Hikmatova, F. Zokirov</b>                                                                                                                                                           |            |
| <i>Determination of the displacements of the conjugated ends of the span structures of bridge structures and recommendations for selecting modern designs of deformation joints .....</i> | <b>182</b> |

CONTEXTE / MUNDARIJA