

ENGINEER

international scientific journal

SPECIAL ISSUE

E-ISSN

3030-3893

ISSN

3060-5172

A bridge between science and innovation

**TOSHKENT DAVLAT
TRANSPORT UNIVERSITETI**
Tashkent state
transport university

ENGINEER

A bridge between science and innovation

E-ISSN: 3030-3893

ISSN: 3060-5172

SPECIAL ISSUE

16-iyun, 2025

engineer.tstu.uz

“QURILISHDA YASHIL IQTISODIYOT, SUV VA ATROF-MUHITNI ASRASH TENDENSIYALARI, EKOLOGIK MUAMMOLAR VA INNOVATSION YECHIMLAR” MAVZUSIDAGI RESPUBLIKA MIQYOSIDAGI ILMIY-AMALIY KONFERENSIYA TASHKILIY QO‘MITASI

1. Abdurahmonov O.K. – O‘zbekiston Respublikasi Prezidenti Administratsiyasi ijtimoiy rivojlantirish departamenti rahbari, Toshkent davlat transport universiteti rektori
2. Gulamov A.A – Toshkent davlat transport universiteti prorektori
3. Shaumarov S.S – Toshkent davlat transport universiteti prorektori
4. Suvonqulov A.X. – O‘zsuvta’minoti AJ raisi
5. Xamzayev A.X. – O‘zbekiston ekologik partiyasi raisi
6. Maksumov N.E. – O‘zbekiston Respublikasi Vazirlar Mahkamasi huzuridagi Qurilish va uy-joy kommunal xo‘jaligi sohasida nazorat qilish inspeksiysi boshlig‘i o‘rinbosari
7. Baratov D.X. – Toshkent davlat transport universiteti prorektori
8. Turayev B. X – Toshkent davlat transport universiteti prorektori
9. Norkulov S.T. – Toshkent davlat transport universiteti prorektori
10. Adilxodjayev A.E. – Universitedagi istiqbolli va strategik vazifalarni amalga oshirish masalalari bo‘yicha rektor maslahatchisi
11. Negmatov S.S. – “Fan va taraqqiyot” DUK ilmiy rahbari, O‘zbekiston Respublikasi Fanlar Akademiyasi Akademigi
12. Abed N.S. – “Fan va taraqqiyot” DUK raisi
13. Merganov A.M – Ilmiy tadqiqotlar, innovatsiyalar va ilmiy-pedagogik kadrlar tayyorlash bo‘limi boshlig‘i
14. Ibadullayev A. – Muhandislik kommunikatsiyalari va tizimlari kafedrasi professori
15. Rizayev A. N. – Muhandislik kommunikatsiyalari va tizimlari kafedrasi professori
16. Xalilova R.X. – Muhandislik kommunikatsiyalari va tizimlari kafedrasi professori
17. Babayev A.R. – “Qurilish muhandisligi” fakulteti dekani
18. Boboxodjayev R.X – Tahririy nashriyot va poligrafiya bo‘limi boshlig‘i
19. Talipov M.M – Ilmiy nashrlar bilan ishslash bo‘limi boshlig‘i
20. Maxamadjonova Sh.I. - Matbuot xizmati kontent-menedjeri
21. Umarov U.V. – Muhandislik kommunikatsiyalari va tizimlari kafedrasi mudiri
22. Eshmamatova D.B. – Oliy matematika kafedrasi mudiri
23. Muxammadiyev N.R. – Bino va sanoat inshootlari qurilishi kafedrasi mudiri
24. Tursunov N.Q. – Materialshunoslik va mashinasozlik kafedrasi mudiri
25. Shermuxammedov U.Z. – Ko‘priklar va tonnellar kafedrasi mudiri
26. Lesov Q.S. – Temir yo‘l muhandisligi kafedrasi mudiri
27. Pirnazarov G‘.F. – Amaliy mehanika kafedrasi mudiri
28. Teshabayeva E.U. – Tabiiy fanlar kafedrasi professori
29. Chorshanbiyev Umar Ravshan o‘g‘li – Muhandislik kommunikatsiyalari va tizimlari kafedrasi dotsent v.b.
30. Obidjonov Axror Jo‘raboy o‘g‘li – Muhandislik kommunikatsiyalari va tizimlari kafedrasi assistenti

Assessment of the stability of the excavation tunnel and vertical movements of the earth's surface

Sh. Normurodov¹, D.A. Lintang², Y. Usmonaliev¹, H. Normurodov¹

¹Tashkent state transport university, Tashkent, Uzbekistan

²Jakarta Global University, Jakarta, Indonesia

Abstract:

In the work, a new numerical modeling method for solving the problems of determining the stress-deformation state of the ground massif around the artificial void of the metropolitan walking tunnels under construction is presented. The initial stress and deformation state of the ground array before tunnel excavation, that is, under the influence of volume loading, is determined, and then the values of additional stresses in the array are determined due to the effects of the stresses measured around the artificial space caused by the excavation. In order to increase the potency of the proposed calculation method, development of algorithm and program for digitization of finite elements and their nodes according to order: modern algorithms for graphically outputting data on initial data, displacements in nodes, deformation and stresses in elements were developed

Keywords: tunnel, stress, viscoelastic, seismic impact, vertical stresses, tangential stress, elastic deformation, inelastic deformation

1. Introduction

Checking the stress-deformation condition round tunnels is one of the main issues of the mechanic's of underground structures. Excavation of an artificial space associated with the removal of a certain volumes of ground from the massive leads to a violation of the existing balance in it and a change in the initial field of stresses. In the process of solving the problem of elastic or inelastic parcelling of stresses around artificial spaces located in the ground massif, it is necessary to use a calculation scheme that allows to get rid of rather large errors in determining the stresses and displacements around the artificial space.

The calculation scheme proposed by I.V. Rodin is based on the use of the superposition method [1-9]. At the same time, the stress-deformation state of the undisturbed ground massive under the influence of the initial stresses before tunneling is determined, and then excavation works are performed and the state after "removal" of the stresses on the contour of the artificial cavity is re-measured. The sum of the initial and additional values of stresses and deformations gives the solution of the problem (Figures 1-2).

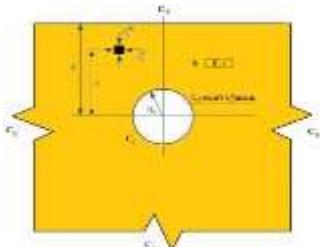


Fig. 1. The scheme for determining the state of stress-deformation round the artificial cavity of the tunnel

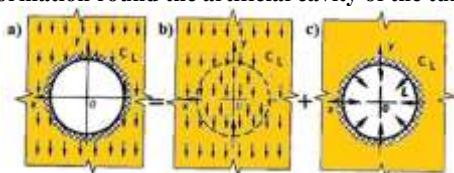


Fig. 2. The scheme for determining the state of tension and deformation round the artificial cavity of the tunnel:

a - artificial cavity with real tension; b - the initial stresses in the specified soil circle; c - "removable" stresses on the contour of the artificial cavity

2. Materials and methods

The sought-after components of the total stresses in the ground field S can be expressed as the sum of two addends, as shown above:

$$\begin{aligned}\sigma_x &= \sigma_x^{(0)} + \sigma_x^{(1)}; \\ \sigma_y &= \sigma_y^{(0)} + \sigma_y^{(1)} \\ \tau_{xy} &= \tau_{xy}^{(0)} + \tau_{xy}^{(1)}\end{aligned}\quad (2.1)$$

The vertical and horizontal components of the pressure of the ground mass at a certain depth equal to the average specific gravity g are calculated according to certain formulas:

$$\sigma_y^{(0)} = \gamma H; \sigma_x^{(0)} = \lambda \gamma H \quad (2.2)$$

The loads imposed on the considered part of the array can also be imposed by volumetric gravity forces, divided by boundary normal and shear forces. Appropriate conditions are modeled to prevent perpendicular movement of the considered soil mass zone S at the far boundaries. If the array is multi-layered, the stresses vary considerably from layer to layer and the more the elastic characteristics of the stresses differ, the greater the variation in stresses. Therefore, the parcelling of stresses around the contour of the ground rock at the intersection of the excavation site with layers with different initial stress states is quite different from the homogeneous model. The linear elastic model is based on Hooke's law of isotropic liners elasticity. The model includes two constants: Young's modulus (E) and coefficient of Poisson's ratio (ν). We assume that the deformations caused by these forces are small and correspond to the following basic equations [10]:

1. Equilibrium equations (Static equations)

$$\frac{\partial \sigma_x}{\partial x} + \frac{\partial \tau_{xy}}{\partial y} + \bar{X} = 0, \quad \frac{\partial \tau_{yx}}{\partial x} + \frac{\partial \sigma_y}{\partial y} + \bar{Y} = 0 \quad (2.3)$$

$$\tau_{xy} = \tau_{yx} = \tau,$$

where X and Y are volumetric forces in the form of initial stresses or in matrix form $A\vec{\sigma} + \vec{P} = 0$,

$$\text{here, } A = \begin{bmatrix} \frac{\partial}{\partial x} & 0 & \frac{\partial}{\partial y} \\ 0 & \frac{\partial}{\partial y} & \frac{\partial}{\partial x} \end{bmatrix}, \vec{\sigma} = [\sigma_x \sigma_y \tau], \vec{P} = [\bar{X} \bar{Y}].$$

2. Connections between deformation and displacements (geometric equations)

$$\varepsilon_x = \frac{\partial u}{\partial x}, \quad \varepsilon_y = \frac{\partial v}{\partial y}, \quad \gamma_{xy} = \frac{\partial v}{\partial x} + \frac{\partial u}{\partial y}, \quad (2.4)$$

or $\vec{\varepsilon} = A^T \vec{U}$,

$$\text{here, } A^T = \begin{bmatrix} \frac{\partial}{\partial x} & 0 \\ 0 & \frac{\partial}{\partial y} \\ \frac{\partial}{\partial y} & \frac{\partial}{\partial x} \end{bmatrix} \vec{\varepsilon} = [\varepsilon_x \varepsilon_y]^T, \vec{U} = [u v]^T.$$

3. Physical equations (Hooke's law)

$$\varepsilon_x = \frac{1}{E} (\sigma_x - \nu \sigma_y),$$

$$\varepsilon_y = \frac{1}{E} (\sigma_y - \nu \sigma_x), \quad (2.5)$$

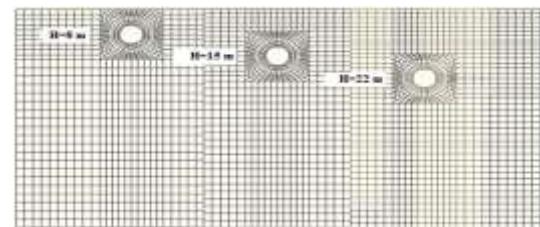
$$\gamma_{xy} = \frac{\tau_{xy}}{G}$$

or $\vec{\varepsilon} = B \vec{\sigma}$ here

$$B = \frac{1}{E} \begin{bmatrix} 1 & -\nu & 0 \\ -\nu & 1 & 0 \\ 0 & 0 & 2(1+\nu) \end{bmatrix}.$$

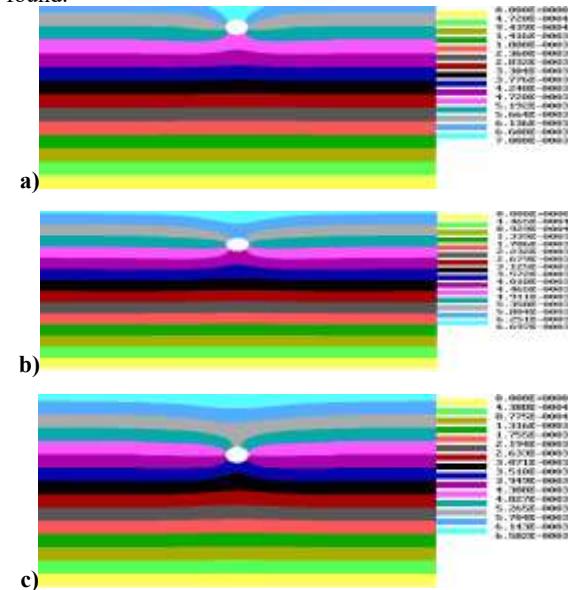
Analysis of the stress-deformation state with the finite element method allows to evaluate the deformation and stress changes that occur in the system as a result of the non-uniformity of elastic properties and changes in geometric shapes, fulfilling the conditions of the static equilibrium stateFace stability during tunneling is one of the most important static problem's in the field of tunneling. Nowadays, the tunnel usually collapses due to troubles in the excavation of the face. This phenomenon is observed both in tunnels made in the ground and those made in rock. In addition, collapses in the tunnel were recorded in both shallow and deep tunnels [11-14].

3. Numerical results and discussion


In this regard, we will consider the problem of determining the stability of a tunnel excavation, which was carried out using a Herrenknecht TBM. In the course of solving the problem, the initial stress field, zones of limit states in the vicinity of the excavation and vertical displacements of the surface of the soil mass were calculated. In this case, the main linear dimensions of the model are as follows: model width (dimension in the direction of the X axis) – 100 meter; model height (dimension in the Y-axis direction) – 70 meter.

For this purpose, the physical and mechanical properties of the rock mass along the tunnel route between the station were used Turkistan to st. Yunusabad, which are presented in table 1. The depth of the tunnel varies from 8 to 22 meters.

The diameter of the TBM shield for tunneling is 5860 mm; therefore, the diameter of the excavation in front of the shield is taken in these equal values. Figure 3 shows numerical finite element model's of a rock mass with tunnels at various depths [15].


Table 1
Average value's of the main physico-mechanical parameters of the soil of the metro tunnel route

Layer	h, (m)	γ , (kH/m ³)	E_0 , (MPa)	C, (kPa)	φ , (gr)	v_0
I	2	18,2	4,2	5,4	7	0,32
II	4	17,1	10,7	9,0	12	0,30
III	7	18,7	13,8	11,6	15	0,28
IV	20	19,4	16,5	-	17	0,30

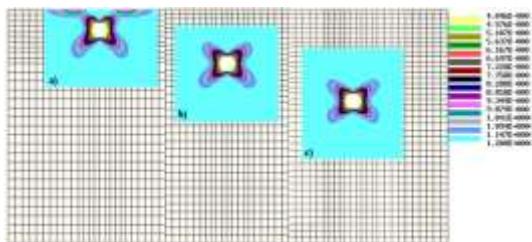
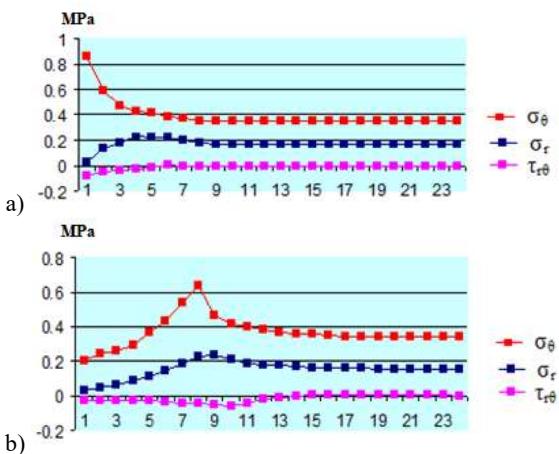

Fig. 3. Numerical models of a massive with workings of a tunnel section of various depths

Figure 4 shows the fields of vertical displacements of a given area for an elastic problem in which the deformation parameters of the soil have not yet changed. Further, as a result of calculations, local zones of local destruction or zones of loss of stability around the tunnel opening were found.


Fig. 4. Isochromes of vertical displacement's of a given are for an elastic problem, at depths:
a) H=8 meter, b) H=15 meter, c) H=22 meter.

The zones are expressed through certain values of ground safety factors η , which are formed as a result of plastic destruction according to the Mohr-Coulomb strength (limit state) condition (Figure 5) [13].

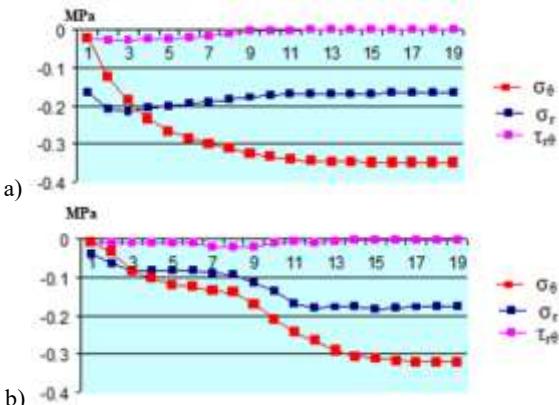
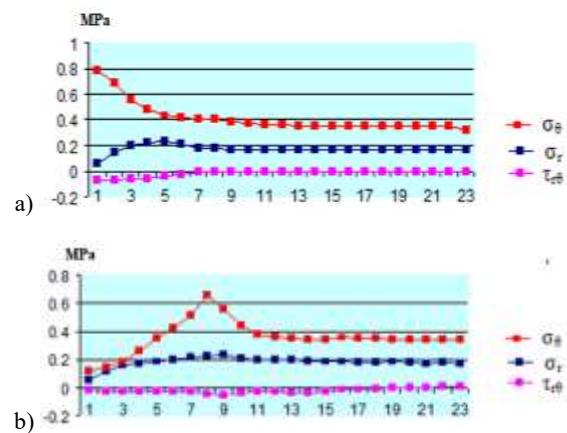
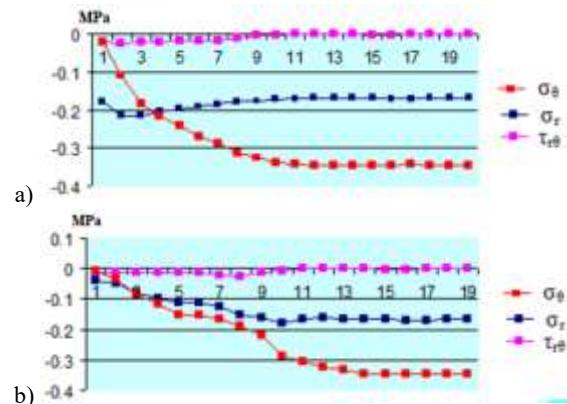
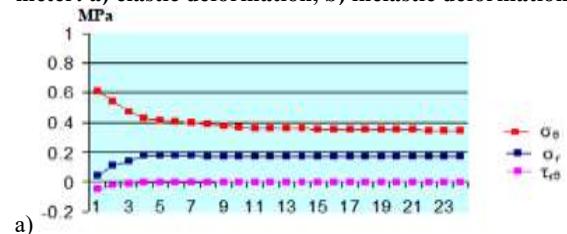


Fig. 5. Isochromes of safety factors η for a given area at tunnel sections: a) $H=8$ meter, b) $H=15$ meter, c) $H=22$ meter


Taking into account plastic destruction with changes in the deformation parameters of the ground for each case ($H = 8$ meter, $H = 15$ meter, $H = 22$ meter) shows that they significantly changed the picture of the stress- deformation state of the ground around the tunnel. The zones of instability round the tunnel opening becomes limited as the excavation depth increases. In figure 6-11 show in the form of graphs the distributions of values of radial, tangential and tangential stresses when problems were solved without and taking into account local destruction in the ground area around the tunnel. Analysis of the graphs shows that the formation of an area of plastic deformation leads to a decrease in the level of stress at the excavation contour in comparison with the solution of the elastic problem. The maximum stress moves deep into the massive to the interface between the elastic and inelastic regions.


Fig 6. Parcelling of tangential, radial and tangential stresses around the excavation at $\theta=0^\circ$ and $H=8$ meter: a) elastic deformation, b) inelastic deformation


Fig. 7. Parcelling of tangential, radial and tangential stresses around the excavation at $\theta=180^\circ$ and $H=8$ meter: a) elastic deformation, b) inelastic deformation

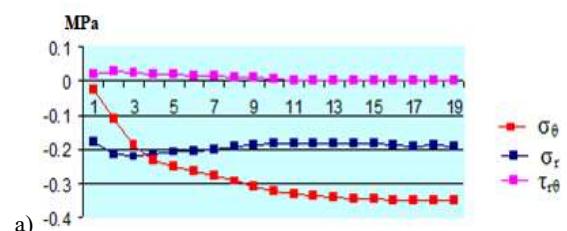

Fig. 8. Parcelling of tangential, radial and tangential stresses around the excavation at $\theta=0^\circ$ and $H=15$ m: a) elastic deformation, b) inelastic deformation

Fig. 9. Parcelling of tangential, radial and tangential stresses around the excavation at $\theta=180^\circ$ and $H=15$ meter: a) elastic deformation, b) inelastic deformation

Fig. 10. Parcelling of tangential, radial and tangential stresses around the excavation at $\theta=0^\circ$ and $H=22$ meter: a) elastic deformation, b) inelastic deformation

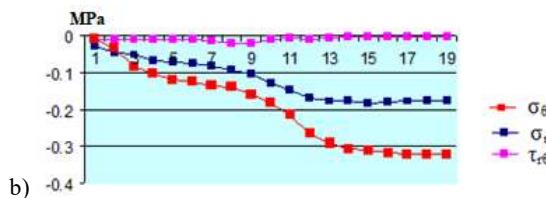


Fig. 11. Parcelling of tangential, radial and tangential stresses around the excavation at $\theta=180^\circ$ and $H=22$ meter: a) elastic deformation, b) inelastic deformation

4. Conclusion

As a result of the numerical calculations performed, the settlement of the earth's surface during tunneling using the shield method was determined. It was found that the maximum precipitation of the ground surface decreases with increasing tunnel section (Fig. 12 - 13). This is due to the fact that when tunnels are laid deep, settlements are largely determined by a decrease in the vertical ground pressure on the tunnel due to the formation of a limited disturbed zone around the workings.

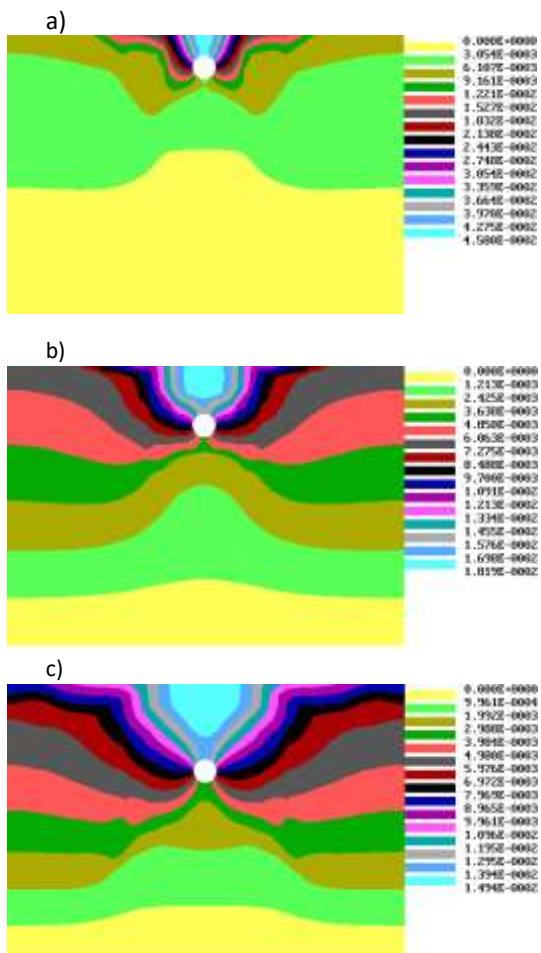


Fig. 12. Isochromes of vertical displacements of a given area of formation of a zone of inelastic deformations at depths: a) $H=8$ meter, b) $H=15$ meter, c) $H=22$ meter

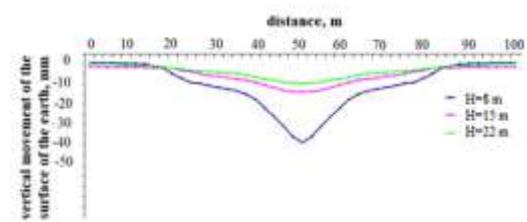


Fig. 13. Settlement of the earth's surface during excavation of a distillation tunnel at depths: a) $H=8$ meter, b) $H=15$ meter, c) $H=22$ meter

Through the created methods, the vertical subsidence of the soil massif around the artificial spaces of the tunnel between the Turkestan and Yunusabad stations located at a depth of 8, 15 and 22 meters, and unstable zones of failure were determined. Real physical and mechanical properties of the surrounding soil array were used in the calculation process. The obtained results made it possible to reveal and determine the specific laws of the changes in ground stresses, the formation of inelastic and non-resilient deformation zones around (near) the contour of the artificial cavity when the metropoliten pedestrian tunnels increase their depth

References

- [1] Miralimov, M., Normurodov, S., Akhmadjonov, M., & Karshiboev, A. (2021). Numerical approach for structural analysis of Metro tunnel station. In E3S Web of Conferences (Vol. 264, p. 02054). EDP Sciences.
- [2] Bulat A. F. Applied Mechanics of elastic-hereditary media. – K.:Science. Dumka, 2012-614 p.
- [3] Dorman I. Y. Seismic transport tunnel. M.: Stroyizdat, 2000, p. 307
- [4] B. Onouye and K. Kane. Statics and Strength of Materials for Architecture and Building Construction. 4-th edition, University of Washington, New Jersey, USA, 2016, p. 589
- [5] Frolov Y.S. and Promising development of transport infrastructure Spain (based on the materials of a practical conference). Zhl "Metro and Tunnel," No. 3. Moscow, 2012, S.11-19
- [6] Broere W. Influence of excess pore pressures on the stability of the tunnel face. In (Re) Claiming the underground space, pp. 759-765, Routledge (2003).
- [7] Barkanov E. Introduction to the finite element method. Institute of Materials and Structures Faculty of Civil Engineering Riga Technical University, pp.1-70, (2001).
- [8] Miralimov, M. X., & Normurodov, S. U. (2019). Construction features of transport tunnels in the mountain areas of Uzbekistan. Journal of Tashkent Institute of Railway Engineers, 15(3), 26-35.
- [9] Ulugbekovich, N. S. (2022). Stress-strain state of the construction of a subway tunnel under seismic impacts. World scientific research journal, 8(1), 3-11.
- [10] Khamitovich, M. M., Ulugbekovich, N. S., & Shomansur o'g'li, T. S. (2021). Calculation technique for typical circular tunnel linings with taking into account the interaction of the structure with the ground. Galaxy International Interdisciplinary Research Journal, 9(6), 362-368.
- [11] Construction of the second stage of the Yunusabad metro line on the section from Shahriston

station to Turkiston station. Section 8. Project of works. Tashkent Metaproekt LLC, p. 120, (2017)

[12] Guglielmetti V., Grasso P., Mahtab A., and Xu S. (Eds.). Mechanized tunnelling in urban areas: design methodology and construction control. Taylor and Francis. (2008).

[13] Miralimov, M., & Shakhboz, N. (2023). Ground behaviour and settlements analysis on tunnelling of shallow-buried metro in Tashkent city. In E3S Web of Conferences (Vol. 401, p. 01062). EDP Sciences.

[14] Salixanov, S. S., Zokirov, F. Z., Xakimova, Y. T., & Ismailova, G. B. (2023). The effect of increasing loads on foundations of operating bridges. In E3S Web of Conferences (Vol. 401, p. 01080). EDP Sciences.

[15] Raxmanov, U. S., & Ismailova, G. B. (2020). Calculation of seismic resistance of reinforced concrete railway spans without prestressing reinforcement. Journal of Tashkent Institute of Railway Engineers, 16(3), 164-169.

[16] Shermuxamedov, U., Shaumarov, S., & Uzdin, A. (2021). Use of seismic insulation for seismic protection of railway bridges. In E3S Web of Conferences (Vol. 264, p. 02001). EDP Sciences.

[17] U.Z. Shermukhamedov, A.B. Karimova, B.S. Zakirov. Calculation of Continuous Reinforced Concrete Bridges And Overpasses Inseismically Hazardous Areas // V International Scientific Conference "Construction Mechanics, Hydraulics and Water Resources Engineering" (CONMECHYDRO - 2023), E3S Web of Conf. Volume 401, 2023. <https://doi.org/10.1051/e3sconf/202340101078>

[18] Turgunbayeva, J. R., Ismoilova, G. B., & Juraev, K. M. (2023). Investigation of mechanical activation of steelmaking slag and obtaining fine filler. In E3S Web of Conferences (Vol. 401, p. 02039). EDP Sciences.

[19] AZ Khasanov, UZ Shermukhamedov, AR Abdullayev. The method for determining the designed resistance of soils with considering the theory of soil strength proposed by the authors // Smart Geotechnics for Smart Societies. CRC Press. - p. 464-467.

Information about authors

Shakhboz Normurodov Toshkent Davlat Transport Unversteti, 100067, Tashkent, Uzbekistan.
Email: normurodovsh25@mail.ru

Lintang Dian Artanti Jakarta Global University, Jakarta, Indonesia.
Email:
lintang@jgu.ac.id

Yakhyobek Usmonaliyev Toshkent Davlat Transport Unversteti, 100067, Tashkent, Uzbekistan.
Email: usmonaliyevy@gmail.com

Khasan Normurodov Toshkent Davlat Transport Unversteti, 100067, Tashkent, Uzbekistan.
Email:
hasanjonnormurodov@gmail.com

M. Ruzibaeva, U. Umarov, A. Rizaev, U. Bakhramov	
<i>Possibilities of using local raw material - black sand for water purification filters</i>	50
D. Allayarov, A. Arifjanov	
<i>Effects of climate change in uzbekistan on floods</i>	54
H. Kosimova, M. Abdukadirova	
<i>Rainwater harvesting and treatment technologies: efficiency and prospects in the context of Uzbekistan</i>	57
Sh. Abdukhalilova, E. Mukhtorov	
<i>Innovative technologies in the production of electricity through waste processing: International experience and perspectives</i>	60
Sh. Abdukhalilova	
<i>Modern equipment for ecology protection</i>	63
D. Atakulov, D. Zhumabaeva, K. Rakhimov	
<i>The use of advanced computational methods in reliable river flow prediction</i>	65
A. Obidjonov, A. Suvankulov, A. Babaev, U. Chorashanbiev	
<i>Assessment of hydraulic efficiency of inter-farm irrigation channels in the context of field research</i>	71
M. Musajonov, A. Ibadullaev, U. Chorashanbiev	
<i>Structural analysis of disperse systems and energy-efficient rheological modeling in hydrotransport processes</i>	74
R. Khalilova	
<i>Environmental education is the basis of environmental protection activities</i>	79
M. Muzaffarova	
<i>Influence of annual atmospheric precipitation on the potential for sand encroachment on roads</i>	83
Sh. Tadjibayev	
<i>Increasing the stability of the railway track surface using modern building materials</i>	87
Kh. Umarov, J. Kodirov, R. Choriev	
<i>Methodology for calculating the strength of balastless track design</i>	90
Sh. Normurodov, D. Lintang, Y. Usmonaliev, H. Normurodov	
<i>Assessment of the stability of the excavation tunnel and vertical movements of the earth's surface</i>	94

CONTEX / MINDARIA