

# ENGINEER



international scientific journal

## SPECIAL ISSUE

E-ISSN

3030-3893

ISSN

3060-5172



A bridge between science and innovation



**TOSHKENT DAVLAT  
TRANSPORT UNIVERSITETI**  
Tashkent state  
transport university



# **ENGINEER**

**A bridge between science and innovation**

**E-ISSN: 3030-3893**

**ISSN: 3060-5172**

**SPECIAL ISSUE**

**16-iyun, 2025**



**[engineer.tstu.uz](http://engineer.tstu.uz)**

**“QURILISHDA YASHIL IQTISODIYOT, SUV VA ATROF-MUHITNI ASRASH TENDENSIYALARI, EKOLOGIK MUAMMOLAR VA INNOVATSION YECHIMLAR” MAVZUSIDAGI RESPUBLIKA MIQYOSIDAGI ILMIY-AMALIY KONFERENSIYA TASHKILIY QO‘MITASI**

1. Abdurahmonov O.K. – O‘zbekiston Respublikasi Prezidenti Administratsiyasi ijtimoiy rivojlantirish departamenti rahbari, Toshkent davlat transport universiteti rektori
2. Gulamov A.A – Toshkent davlat transport universiteti prorektori
3. Shaumarov S.S – Toshkent davlat transport universiteti prorektori
4. Suvonqulov A.X. – O‘zsuvta’minoti AJ raisi
5. Xamzayev A.X. – O‘zbekiston ekologik partiyasi raisi
6. Maksumov N.E. – O‘zbekiston Respublikasi Vazirlar Mahkamasi huzuridagi Qurilish va uy-joy kommunal xo‘jaligi sohasida nazorat qilish inspeksiysi boshlig‘i o‘rinbosari
7. Baratov D.X. – Toshkent davlat transport universiteti prorektori
8. Turayev B. X – Toshkent davlat transport universiteti prorektori
9. Norkulov S.T. – Toshkent davlat transport universiteti prorektori
10. Adilxodjayev A.E. – Universitedagi istiqbolli va strategik vazifalarni amalga oshirish masalalari bo‘yicha rektor maslahatchisi
11. Negmatov S.S. – “Fan va taraqqiyot” DUK ilmiy rahbari, O‘zbekiston Respublikasi Fanlar Akademiyasi Akademigi
12. Abed N.S. – “Fan va taraqqiyot” DUK raisi
13. Merganov A.M – Ilmiy tadqiqotlar, innovatsiyalar va ilmiy-pedagogik kadrlar tayyorlash bo‘limi boshlig‘i
14. Ibadullayev A. – Muhandislik kommunikatsiyalari va tizimlari kafedrasi professori
15. Rizayev A. N. – Muhandislik kommunikatsiyalari va tizimlari kafedrasi professori
16. Xalilova R.X. – Muhandislik kommunikatsiyalari va tizimlari kafedrasi professori
17. Babayev A.R. – “Qurilish muhandisligi” fakulteti dekani
18. Boboxodjayev R.X – Tahririy nashriyot va poligrafiya bo‘limi boshlig‘i
19. Talipov M.M – Ilmiy nashrlar bilan ishslash bo‘limi boshlig‘i
20. Maxamadjonova Sh.I. - Matbuot xizmati kontent-menedjeri
21. Umarov U.V. – Muhandislik kommunikatsiyalari va tizimlari kafedrasi mudiri
22. Eshmamatova D.B. – Oliy matematika kafedrasi mudiri
23. Muxammadiyev N.R. – Bino va sanoat inshootlari qurilishi kafedrasi mudiri
24. Tursunov N.Q. – Materialshunoslik va mashinasozlik kafedrasi mudiri
25. Shermuxammedov U.Z. – Ko‘priklar va tonnellar kafedrasi mudiri
26. Lesov Q.S. – Temir yo‘l muhandisligi kafedrasi mudiri
27. Pirnazarov G‘.F. – Amaliy mehanika kafedrasi mudiri
28. Teshabayeva E.U. – Tabiiy fanlar kafedrasi professori
29. Chorshanbiyev Umar Ravshan o‘g‘li – Muhandislik kommunikatsiyalari va tizimlari kafedrasi dotsent v.b.
30. Obidjonov Axror Jo‘raboy o‘g‘li – Muhandislik kommunikatsiyalari va tizimlari kafedrasi assistenti

## Modern equipment for ecology protection

**Sh.B. Abdukhalilova<sup>1</sup>**

<sup>1</sup>Fergana State Technical University, Uzbekistan

**Abstract:**

This article analyzes the significance of modern equipment in ensuring environmental sustainability and protection. Technologies such as air purification, waste recycling, water resource conservation, and the utilization of renewable energy sources are extensively discussed as means to mitigate environmental issues. The article also provides information on the state policy being implemented in Uzbekistan regarding environmental protection, the declaration of 2025 as the "Year of Environmental Protection and Green Economy," and advanced innovations in this field. This study aims to reveal the potential for effective use of modern technologies in achieving environmental sustainability.

**Keywords:**

Ecological sustainability, HEPA filter, air purifier, bioplastic, energy efficiency, solar panels, wind turbines, wastewater treatment

### 1. Introduction

As humanity continues to develop, environmental problems are also on the rise. Environmental pollution, increasing waste, and the unsustainable use of natural resources are creating global challenges. As a result, science and technology are offering effective solutions to these problems. Modern equipment and innovative solutions are creating opportunities to protect nature, conserve natural resources, and reduce waste.

In Uzbekistan, environmental protection is also considered one of the priorities of state policy. Decrees and resolutions adopted by our President are laying the foundation for significant changes in this field. Specifically, the laws "On Ecology and Environmental Protection," programs for waste management and recycling, as well as decrees on the development of green energy projects are aimed at ensuring environmental sustainability.

In today's world, environmental protection is one of the most crucial tasks facing humanity. As technology advances, new innovative methods and modern equipment are being developed to safeguard the environment. This article discusses some contemporary equipment that helps mitigate ecological problems.

### 2. Air purification equipment

Air pollution has become a major problem as a result of industrialization and urbanization. Modern air purification equipment is being developed to mitigate this issue. For example:

HEPA-filtered air purifiers – effectively remove fine particles from the air and help reduce allergies or respiratory diseases.

HEPA filter – These filters capture up to 99.97% of particles as small as 0.3 microns in the air.

Air purifier equipped with Tefal NanoCaptur® filter – This device effectively eliminates harmful substances such as formaldehyde.

Xiaomi Smart Air Purifier 4 Lite – A compact and smart air purifier that efficiently removes dust, allergens, and other pollutants from the air.

Philips air purifier – This device is equipped with a high-performance HEPA filter, which delivers excellent results in air purification.

Electrostatic filters are used to reduce emissions from industrial enterprises, which prevents air pollution and ensures environmental sustainability.

Vertical forests help purify the air by incorporating plants on the exterior of buildings, which not only improves air quality but also aesthetically enhances the urban environment.

### 3. Recycling and Waste Management Technologies

Recycling waste is crucial to prevent its accumulation. Some technologies used in this field include:

Automated waste sorting equipment - automatically separates waste by type and accelerates the recycling process, which increases recycling efficiency.

Bioplastic production - products made from biodegradable materials instead of traditional plastic reduce environmental harm and contribute to faster waste decomposition.

Energy conversion plants allow for the generation of energy from waste through recycling, which reduces dependence on traditional energy sources.

### 4. Water Resources Protection Technologies

Water is a source of life, and its pollution is a serious problem. The following equipment is used for water protection:

Intelligent filters detect and purify harmful substances in water, which improves the quality of drinking water.

Wastewater treatment systems contribute to the treatment and recycling of industrial and domestic wastewater, which contributes to the reduction of pollution of natural water sources.

Drip irrigation systems - are used to reduce water consumption and efficient irrigation, which plays an important role in water conservation for agriculture.

### 5. Solar and wind energy installations

Traditional energy sources cause many environmental problems. Therefore, the use of renewable energy sources is of great importance:

Solar panels - converting solar energy into electricity, reducing the use of traditional energy sources, while simultaneously reducing electricity costs.

Wind turbines - allow for the efficient use of wind energy, the production of environmentally friendly energy, and reduce harmful emissions into the atmosphere.

Energy-efficient technologies help save electricity in homes and manufacturing enterprises, thereby reducing the carbon footprint.

## 6. Conclusion

The importance of modern equipment in environmental protection is very great. Maintaining clean air, water, and land, recycling waste, and utilizing renewable energy sources are crucial steps for the future of humanity. Along with the development of technologies, their rational use and the fight against environmental problems is the duty of every person. At the same time, public-private partnership plays a crucial role in overcoming environmental crises. Moreover, raising environmental literacy among the population and encouraging the use of modern technologies will help preserve a clean and healthy environment for future generations.

## Foydalanilgan adabiyotlar / References

- [1] Decrees of the President of the Republic of Uzbekistan on Environmental Protection and the Development of the "Green" Economy
- [2] Law "On Environmental Protection"
- [3] The Strategy for Transition to a Green Economy and Ensuring Environmental Sustainability (adopted in 2022)
- [4] United Nations Environment Programme (UNEP)
- [5] International Energy Agency (IEA) – Reports on Renewable Energy Sources
- [6] World Bank – Research on Environmental Sustainability and Climate Change
- [7] Nazarov, A. "Ekologiya va atrof-muhit muhofazasi", Toshkent, 2021

[8] Xodjayev, Sh. "Yashil texnologiyalar va energiya manbalari", Toshkent, 2020

[9] Tursunov, B. "Havoni tozalash va chiqindilarni qayta ishlash usullari", Toshkent, 2019

[10] "Ekologiya va rivojlanish" – O'zbekiston ekologik jurnali

[11] "Yashil iqtisodiyot va innovatsiyalar" – ilmiy jurnal

[12] "International Journal of Environmental Science" – xalqaro ekologik taddiqotlar jurnali

[13] O'zbekiston Respublikasi Ekologiya, atrof-muhitni muhofaza qilish va iqlim o'zgarishi vazirligining rasmiy sayti: eco.gov.uz

[14] Xalqaro ekologik tashkilotlar veb-saytlari (UNEP, Greenpeace, WWF)

[15] Ilmiy va statistik ma'lumotlar joylashtirilgan veb-portallar (ResearchGate, Google Scholar)

[16] Husanov, N., and Sh Abdukhalilova. "HEAT CHANGE PROCESSES IN A SHELL-AND-TUBE HEAT EXCHANGER." Science and innovation 1.A7 (2022): 721-725.

[17] Usmanova, N., and Sh Abdukhalilova. "SHELL-AND-TUBE HEAT EXCHANGER DESIGN WITH INCREASED TURBULENCE OF THE HEATED LIQUID FLOW." Science and innovation 1.A7 (2022): 726-731.

## Mualiflar haqida ma'lumot

**Abduxalilova Shaxnozakhon Baxtiyorbek qizi** Farg'onadavlat texnika universiteti assistenti, O'zbekiston e.mail: [shahnozaabduxalilova7@gmail.com](mailto:shahnozaabduxalilova7@gmail.com) ORCID:0000-0002-6849-5914

|                                                                                                                                     |    |
|-------------------------------------------------------------------------------------------------------------------------------------|----|
| <b>M. Ruzibaeva, U. Umarov, A. Rizaev, U. Bakhramov</b>                                                                             |    |
| <i>Possibilities of using local raw material - black sand for water purification filters</i>                                        | 50 |
| <b>D. Allayarov, A. Arifjanov</b>                                                                                                   |    |
| <i>Effects of climate change in uzbekistan on floods</i>                                                                            | 54 |
| <b>H. Kosimova, M. Abdukadirova</b>                                                                                                 |    |
| <i>Rainwater harvesting and treatment technologies: efficiency and prospects in the context of Uzbekistan</i>                       | 57 |
| <b>Sh. Abdukhalilova, E. Mukhtorov</b>                                                                                              |    |
| <i>Innovative technologies in the production of electricity through waste processing: International experience and perspectives</i> | 60 |
| <b>Sh. Abdukhalilova</b>                                                                                                            |    |
| <i>Modern equipment for ecology protection</i>                                                                                      | 63 |
| <b>D. Atakulov, D. Zhumabaeva, K. Rakhimov</b>                                                                                      |    |
| <i>The use of advanced computational methods in reliable river flow prediction</i>                                                  | 65 |
| <b>A. Obidjonov, A. Suvankulov, A. Babaev, U. Chorashanbiev</b>                                                                     |    |
| <i>Assessment of hydraulic efficiency of inter-farm irrigation channels in the context of field research</i>                        | 71 |
| <b>M. Musajonov, A. Ibadullaev, U. Chorashanbiev</b>                                                                                |    |
| <i>Structural analysis of disperse systems and energy-efficient rheological modeling in hydrotransport processes</i>                | 74 |
| <b>R. Khalilova</b>                                                                                                                 |    |
| <i>Environmental education is the basis of environmental protection activities</i>                                                  | 79 |
| <b>M. Muzaffarova</b>                                                                                                               |    |
| <i>Influence of annual atmospheric precipitation on the potential for sand encroachment on roads</i>                                | 83 |
| <b>Sh. Tadjibayev</b>                                                                                                               |    |
| <i>Increasing the stability of the railway track surface using modern building materials</i>                                        | 87 |
| <b>Kh. Umarov, J. Kodirov, R. Choriev</b>                                                                                           |    |
| <i>Methodology for calculating the strength of balastless track design</i>                                                          | 90 |
| <b>Sh. Normurodov, D. Lintang, Y. Usmonaliev, H. Normurodov</b>                                                                     |    |
| <i>Assessment of the stability of the excavation tunnel and vertical movements of the earth's surface</i>                           | 94 |

CONEXX / MINDARIA