

ENGINEER

international scientific journal

ISSUE 4, 2025 Vol. 3

E-ISSN

3030-3893

ISSN

3060-5172

A bridge between science and innovation

**TOSHKENT DAVLAT
TRANSPORT UNIVERSITETI**
Tashkent state
transport university

ENGINEER

A bridge between science and innovation

E-ISSN: 3030-3893

ISSN: 3060-5172

VOLUME 3, ISSUE 4

DECEMBER, 2025

engineer.tstu.uz

TASHKENT STATE TRANSPORT UNIVERSITY

ENGINEER

INTERNATIONAL SCIENTIFIC JOURNAL
VOLUME 3, ISSUE 4 DECEMBER, 2025

EDITOR-IN-CHIEF SAID S. SHAUMAROV

Professor, Doctor of Sciences in Technics, Tashkent State Transport University

Deputy Chief Editor
Miraziz M. Talipov

Doctor of Philosophy in Technical Sciences, Tashkent State Transport University

Founder of the international scientific journal “Engineer” – Tashkent State Transport University, 100167, Republic of Uzbekistan, Tashkent, Temiryo‘lchilar str., 1, office: 465, e-mail: publication@tstu.uz.

The “Engineer” publishes the most significant results of scientific and applied research carried out in universities of transport profile, as well as other higher educational institutions, research institutes, and centers of the Republic of Uzbekistan and foreign countries.

The journal is published 4 times a year and contains publications in the following main areas:

- Engineering;
- General Engineering;
- Aerospace Engineering;
- Automotive Engineering;
- Civil and Structural Engineering;
- Computational Mechanics;
- Control and Systems Engineering;
- Electrical and Electronic Engineering;
- Industrial and Manufacturing Engineering;
- Mechanical Engineering;
- Mechanics of Materials;
- Safety, Risk, Reliability and Quality;
- Media Technology;
- Building and Construction;
- Architecture.

Tashkent State Transport University had the opportunity to publish the international scientific journal “Engineer” based on the **Certificate No. 1183** of the Information and Mass Communications Agency under the Administration of the President of the Republic of Uzbekistan. **E-ISSN: 3030-3893, ISSN: 3060-5172.** Articles in the journal are published in English language.

Assessment of dielectric insulation condition of power transformers using Dielectric Absorption Ratio (DAR) and Polarization Index (PI)

O.M. Kutbidinov¹^a, D.R. Abdullabekova²^b, D.F. Usmonov¹^c, M.N. Khushbakov¹^d

¹Tashkent state transport university, Tashkent, Uzbekistan

²Tashkent University of Information Technologies named after Al Khorezmi, Tashkent, Uzbekistan

Abstract:

The operational reliability and service life of power transformers significantly depend on the condition of their solid dielectric insulation. Moisture ingress, thermal aging, and electrical stress alter the dielectric properties of insulation, reducing its electrical strength and accelerating degradation processes. This paper examines two widely used diagnostic indicators—the Dielectric Absorption Ratio (DAR) and the Polarization Index (PI)—which are employed to assess insulation moisture content and aging degree. The diagnostic criteria, interpretation of measured results, and significance of these indicators in predictive maintenance are presented.

Keywords:

Dielectric Absorption Ratio (DAR); Polarization Index (PI); transformer insulation diagnostics; moisture assessment; dielectric response; solid insulation aging; time-domain insulation testing; insulation resistance; transformer condition monitoring; dielectric degradation

1. Introduction

Solid dielectric insulation plays a critical role in ensuring the operational stability and energy efficiency of power transformers and electrical machines. Variations in environmental humidity, temperature, mechanical stress, and prolonged exposure to electric fields cause changes in the insulation's dielectric characteristics. These changes lead to increased leakage current, reduced insulation resistance, higher dielectric losses, and deterioration of electric strength. Therefore, proper diagnostic evaluation of insulation condition is essential for preventing failures and planning maintenance.

Among various insulation diagnostics methods, the most informative and widely applied are the Dielectric Absorption Ratio (DAR) and the Polarization Index (PI). These parameters provide qualitative and quantitative assessments of insulation moisture levels and aging state.

2. Methodology

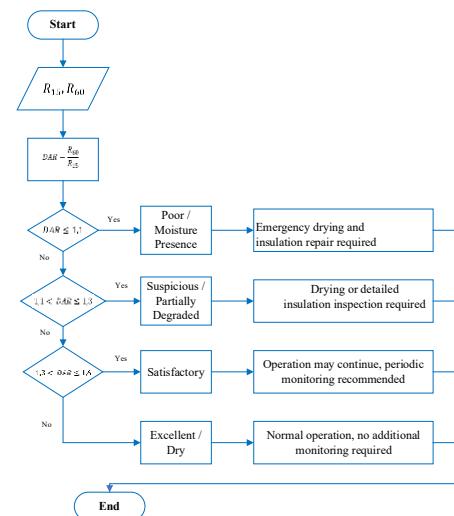
2.1 Dielectric Absorption Ratio (DAR)

The Dielectric Absorption Ratio (DAR) reflects the polarization processes occurring in the dielectric material and serves as an indicator of moisture content. DAR is determined by comparing insulation resistance values measured after 15 seconds (R_{15}) and 60 seconds (R_{60}):

$$DAR = \frac{R_{60}}{R_{15}}$$

2.2 Polarization Index (PI)

The Polarization Index (PI) reflects the insulation's aging state and slow polarization processes. It is calculated as the ratio of resistance measured at 600 seconds (R_{600}) to resistance at 60 seconds (R_{60}):


$$PI = \frac{R_{600}}{R_{60}}$$

Higher PI values indicate low leakage current and stable dielectric performance, while lower values indicate degradation.

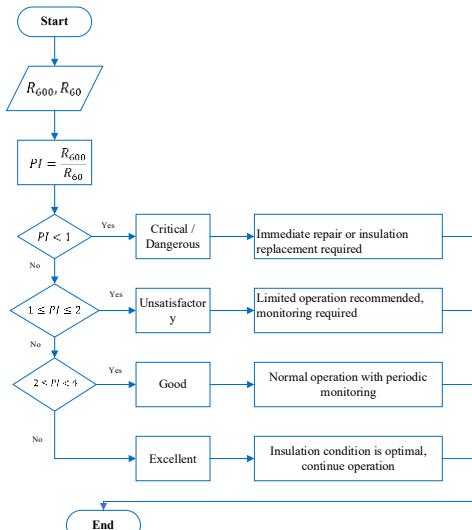
PI provides deeper diagnostic insight compared to DAR because it captures slower polarization phenomena associated with structural insulation aging.

3. Results and Discussion

The presence of moisture significantly lowers insulation resistance due to dissolved ions that increase leakage current and dielectric losses ($\tan \delta$). This leads to:

Fig. 1. Diagnostic Flow Chart for Transformer Insulation Evaluation Based on Dielectric Absorption Ratio (DAR)

- Increased heat generation in the insulation


^a <https://orcid.org/0000-0001-9290-5322>
^b <https://orcid.org/0009-0003-8887-6831>

^c <https://orcid.org/0009-0001-7923-0720>
^d <https://orcid.org/0009-0004-9989-4776>

- Acceleration of thermal aging
- Reduced dielectric breakdown strength

Both DAR and PI decrease when insulation contains moisture, exhibits high ionic conductivity, or undergoes thermal-oxidative aging. This leads to:

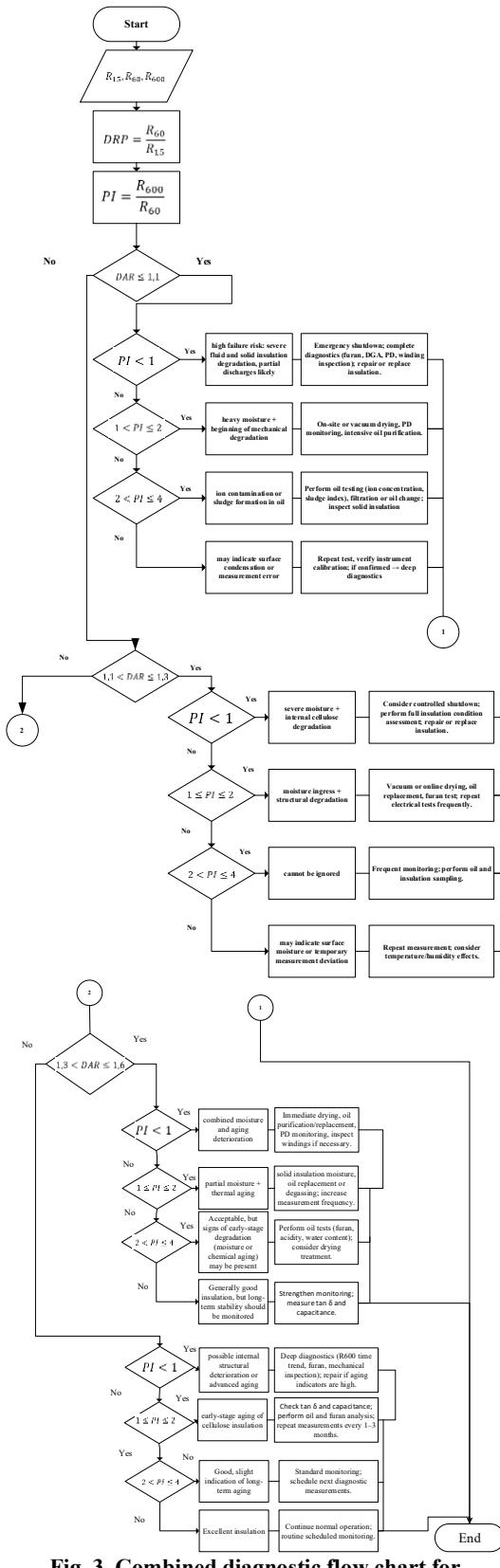

- Reduction in electric breakdown strength
- Increase in dielectric losses
- Advancement of aging reactions
- Increased probability of catastrophic insulation failure

Fig.2. Diagnostic Flow Chart for Transformer Insulation Evaluation Based on Polarization Index (PI)

For comprehensive insulation evaluation, DAR and PI should be analyzed together with additional indicators such as:

- Dielectric loss tangent ($\tan \delta$),
- Capacitance variation,
- Temperature correction factors of insulation resistance.

Fig.3. Combined diagnostic flow chart for insulation condition decision based on DAR and PI

4. Conclusion

The experimental and mathematical investigations conducted in this study provided a comprehensive evaluation of the robustness and data transmission performance of telemetry systems operating in different frequency bands under electronic warfare (EW) conditions. Testing the TBS Crossfire (868 MHz) and LoRa SX1278 (433 MHz) modules—integrated with an STM32 microcontroller—at distances of 50 m, 100 m, and 200 m under a 10 W jamming signal demonstrated that the stability of the telemetry channel is critically dependent on both physical signal attenuation and the interference-induced SINR values.

References

[1] Kutbidinov O.M., Yusupov D.T. Probability of safe operation and failure of the traction transformer // III Международная научная конференция на тему: «Актуальные вопросы прикладной физики и энергетики» Азербайджан, г. Сумгait, 27-28 октября 2022 г., с. 144-146.

[2] Pankaj Sh., Sood Y.R., Jarial R.K. Experimental Evaluation of Water Content in Transformer Oil // International Journal of Innovative Research in Science, Engineering and Technology. Vol. 2. 2013. pp. 284-291.

[3] Yahya A. A. Assessment of the Efficiency of Transformers Technical Condition Monitoring Based on Dissolved Gas Analysis // J. Sib. Fed. Univ. Eng. Technol. 2020. Vol. 13, №. 4. pp. 438-448.

[4] M. Koch, M. Krüger, and J. Blennow, "Influence of Charging Voltage Magnitude on Time Domain Dielectric Response of Oil-Paper Insulation," IET Science, Measurement & Technology, vol. 13, no. 6, pp. 870–876, Aug. 2019, doi: 10.1049/iet-smt.2018.5276.

[5] Nnachi, G.U.; Nicolae, D.V. Diagnostic methods of frequency response analysis for power transformer winding a review. In Proceedings of the 2016 IEEE International Power Electronics and Motion Control Conference (PEMC), Varna, Bulgaria, 25–28 September 2016; IEEE: Piscataway, NJ, USA, 2016; pp. 563–568.

[6] Jaiswal, G.C.; Ballal, M.S.; Tutakne, D.R.; Doorwar, A. A Review of Diagnostic Tests and Condition Monitoring Techniques for Improving the Reliability of

Power Transformers. In Proceedings of the 2018 International Conference on Smart Electric Drives and Power System (ICSEDPs), Nagpur, India, 12–13 June 2018; IEEE: Piscataway, NJ, USA, 2018; pp. 209–214.

[7] Giri, L.N.; Singh, G.; Kumar, S.; Jaiswal, M.K. Role of Tan Delta Measurement Technique in Power Transformer Moisture Condition Assessment at Factory and Field Level. Int. J. Adv. Res. Electr. Electron. Instrum. Eng. 2025, 14, 51–57.

Information about the author

Odiljon Kutbidinov Toshkent davlat transport universiteti “Elektrotexnika” kafedrasи v.b. dotsenti, PhD E-mail: odiljon.kutbidinov@bk.ru Tel.: +99897 461 60 03 <https://orcid.org/0000-0001-9290-5322>

Dilafruz Abdullabekova Muhammad al-Xorazmiy nomidagi Toshkent Axborot Texnologiyalari Universiteti, PhD, dotsent v.b. E-mail: abdullabekova_94@mail.ru Tel.: +99894 658 48 84 <https://orcid.org/0009-0003-8887-6831>

Dilmurod Usmonov Toshkent davlat transport universiteti magistranti E-mail: usmonovdilmurod407@gmail.com Tel.: +998903970881 <https://orcid.org/0009-0001-7923-0720>

Mirzohid Khushbakov Toshkent davlat transport universiteti magistranti Email: mirzohidxushbaqov@gmail.com Tel.: +99893414 6173 <https://orcid.org/0009-0004-9989-4776>

M. Miralimov, Sh. Ahmedov, B. Mukhitdinov <i>Problems and damages in road and bridge structures, as well as increasing their bearing capacity with gabion structures.....</i>	56
M. Azizullayev, R. Nematzade <i>Experimental measurement and mathematical modeling of uav telemetry channel behavior under radio-electronic warfare.....</i>	60
O. Kutbidinov, D. Abdullabekova, D. Usmonov, M. Khushbakov <i>Assessment of dielectric insulation condition of power transformers using Dielectric Absorption Ratio (DAR) and Polarization Index (PI).....</i>	65

CONTEXT / MUNDARIA