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Abstract: This article discusses the problem of automated forecasting of the technical condition of train radio 

communication networks within the railway sector of Uzbekistan. The technical characteristics of 

existing systems, the theoretical model of signal propagation, and the main causes of failures are 

examined in detail. Traditional forecasting approaches are shown to be limited, as they often fail to 

adequately reflect nonlinear processes, the influence of electromagnetic interference, and the impact of 

maintenance activities. To address these shortcomings, an automated forecasting approach based on 

artificial neural networks is proposed. This method makes it possible to identify both sudden and 

gradually developing faults in advance, thereby increasing overall system reliability, supporting effective 

planning of technical maintenance, and reducing operational costs. Practical experiments carried out on 

railway sections confirmed the effectiveness of the proposed methodology. Overall, the use of neural 

networks for forecasting is considered a scientific and practical solution for enhancing the reliability of 

train radio communication systems, improving safety, and accelerating the gradual transition toward 

digital communication technologies. 
Keywords: Train radio communication, telecommunication networks, neural networks, predictive maintenance, fault 

forecasting, technical condition monitoring, reliability, readiness coefficient, railway communication 

systems, digital technologies 

 

 
1. Introduction 

Railway transport represents one of the key sectors of a 

country’s economic and social infrastructure, and its 

operation must consistently meet high standards of safety 

and efficiency. Ensuring traffic safety and managing 

transportation processes critically depend on operational-

technological communication systems (OTCS). These 

systems provide continuous information exchange among 

train drivers, dispatchers, station attendants, and technical 

personnel. Therefore, train radio communication (TRC), 

which constitutes an integral part of OTCS, is required to 

guarantee a high level of reliability and continuity, serving 

as one of the fundamental conditions for safe and stable 

railway operations [1]. 

At present, TRC systems in Uzbekistan primarily 

operate within the hectometer (HF/VHF low-band) and 

meter (VHF high-band) frequency ranges. These ranges 

have been in practical use for many years and were once 

considered effective solutions. The advantage of the 

hectometer range lies in its ability to provide long-distance 

signal transmission. However, due to its high sensitivity to 

atmospheric noise and industrial electromagnetic 

interference, reliable communication is frequently disrupted. 

The meter range, in contrast, ensures higher-quality voice 

transmission, yet its dependence on line-of-sight 

propagation leads to significant signal attenuation in 

mountainous areas and especially within long tunnels. 

Currently, TRC equipment and line infrastructure in 

Uzbekistan are physically outdated. Corrosion in antennas 

and cables, contamination of insulation, and loosening of 

contacts gradually deteriorate signal quality. As a result, 

“uncertain radio coverage zones” emerge within the 

network, where train drivers cannot maintain stable 

communication with dispatchers, thereby reducing the 

overall level of operational safety [1]. 

 
a https://orcid.org/0000-0002-8443-9250 

Traditional monitoring methods do not allow timely 

identification of such problems. In the existing system, 

signal levels are recorded only once every quarter using 

laboratory railcars. However, new faults that occur in the 

interval between inspections may remain undetected for 

several months. Increasing the frequency of inspections 

would sharply raise operational costs. Consequently, the 

automated forecasting of parametric faults has become an 

urgent and essential task. 

Reliability indicators of train radio communication 

networks. One of the most important concepts in assessing 

the efficiency and safety of technical systems is reliability. 

In TRC networks [2], reliability is evaluated using the 

readiness coefficient (𝐾𝑔): 

𝐾𝑔 =
𝑇𝑝

𝑇𝑝 + 𝑇𝑏
 

where: 

• 𝑇𝑝 – the total operating time of the TRC channel, 

• 𝑇𝑏 – the recovery time after a failure. 

If failures occur infrequently or recovery is carried out 

very quickly, the value of 𝐾𝑔 approaches one. This indicates 

that the system is highly reliable. Conversely, if failures 

occur frequently or the recovery process takes a long time, 

the value of 𝐾𝑔 decreases significantly, reflecting reduced 

system reliability. 

For TRC systems, maintaining the readiness coefficient 

within the range of 0.95–0.98 is considered one of the 

essential safety requirements. In practice, however, 

especially when using outdated equipment, this indicator 

often does not exceed 0.90–0.92. Therefore, enhancing the 

reliability of existing systems requires not only the rapid 

detection of failures but, more importantly, their prediction 

in advance [3]. 

https://orcid.org/0000-0002-8443-9250
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Empirical observations on the railways of Uzbekistan 

show that TRC systems operating in the hectometer band are 

frequently affected by atmospheric noise, resulting in 

repeated signal losses. In the meter band, sudden attenuation 

or complete loss of the signal is observed in mountainous 

areas or inside tunnels. Under such conditions, the recovery 

time (𝑇𝑏) increases, leading to a reduction in the readiness 

coefficient. Consequently, minimizing 𝑇𝑏 is a fundamental 

requirement for improving the reliability of TRC systems. 

 

2. Research methodology 

Theoretical model of signal propagation. The primary 

function of TRC systems is to ensure continuous and reliable 

communication between the train driver and the dispatcher. 

The stability of communication primarily depends on the 

propagation characteristics of radio waves and the effective 

transmission distance of the signal. Therefore, accurate 

modeling of signal propagation and the establishment of 

theoretical foundations are of crucial importance in TRC 

networks [4]. 

One of the fundamental requirements for 

communication quality in train radio systems is that, at any 

point within a given section, the train driver must maintain 

reliable contact with at least two stationary base stations 

located on opposite sides. Based on this principle, the 

normative condition can be expressed as follows: 

 

𝑟1 + 𝑟2 − 3 ≥ 𝑙 
where: 

• 𝑟1 and 𝑟2 – the reliable communication ranges (in 

km) between the locomotive and the stationary 

base stations on the left and right sides, 

respectively,  

• 𝑙 – the total length of the section (in km). 

If this condition is met, the train driver will be able to 

maintain simultaneous communication with two base 

stations at any point along the section. This serves as a 

fundamental guarantee of operational safety requirements 

[5]. 

In radio communication systems, the communication 

range can be calculated using the following formula: 

 

𝑟 =
𝐴𝑡𝑥 − 𝑢𝑚𝑖𝑛 − 𝐴𝑎𝑛𝑡.𝑙𝑜𝑠𝑠 − ∑𝑎𝑠𝑡 − ∑𝑎𝑙𝑖𝑛 − ∑𝑎𝑙𝑜𝑐

𝑎𝐻
 

 

where:  

• 𝐴𝑡𝑥 – output signal level of the transmitting 

station, dB;  

• 𝑢𝑚𝑖𝑛 – minimum useful signal level at the 

receiving station, dB;  

• 𝐴𝑎𝑛𝑡.𝑙𝑜𝑠𝑠 – antenna transition losses, dB;   

• ∑𝑎𝑠𝑡 – attenuation in stationary equipment, dB; 

• ∑𝑎𝑙𝑖𝑛 – attenuation in feeder lines, dB; 

• ∑𝑎𝑙𝑜𝑐 – attenuation in locomotive equipment, dB; 

• 𝑎𝐻 – attenuation coefficient per kilometer of 

transmission line, dB/km.  

This formula provides an accurate evaluation of the 

signal quality and coverage range of train radio 

communication systems. Any variation in these parameters 

can have a significant impact on the overall result [6].   

The output signal level (𝐴𝑡𝑥) is the key indicator of the 

transmitter’s power. The higher the power, the greater the 

achievable communication distance. However, excessive 

power consumption increases energy costs and may violate 

electromagnetic compatibility requirements. 

The minimum useful signal (𝑢𝑚𝑖𝑛) represents the lowest 

value necessary for the receiving station to distinguish the 

signal from background noise. This parameter depends on 

the sensitivity of the receiving equipment and the prevailing 

noise level. 

Losses (𝐴𝑎𝑛𝑡.𝑙𝑜𝑠𝑠, ∑𝑎𝑠𝑡, ∑𝑎𝑙𝑖𝑛 , ∑𝑎𝑙𝑜𝑐) denote the 

attenuation occurring during antenna transition, propagation 

along the transmission line, and within locomotive 

equipment. In practice, these losses often represent the 

primary reason for signal quality degradation.    

The per-kilometer attenuation coefficient (𝑎𝐻) 

characterizes the natural decrease in signal strength along the 

guiding line [7]. It depends on the material of the line, cable 

quality, and surrounding environmental conditions. 

By applying the theoretical model of signal propagation, 

it is possible to preliminarily assess signal quality and 

coverage distance in TRC systems. This enables: 

• optimal selection of inter-station distances, 

• accurate design of antenna placement, 

• timely maintenance of transmission lines, 

• reduction of operational costs.  

However, the model is based solely on static calculations 

and does not fully account for factors such as equipment 

aging, gradual degradation, and the influence of external 

electromagnetic environments over time. Therefore, for 

forecasting parametric failures, more effective approaches 

are required – in particular, automated prediction methods 

based on neural networks [8]. 

The criticality of failures depends on both their rate of 

impact and the possibility of detection. Sudden failures are 

usually recognized immediately and can typically be 

eliminated within a short period of time. Gradual failures, on 

the other hand, are more hazardous since they may remain 

unnoticed for an extended period while posing a significant 

threat to operational safety. 

On the railways of Uzbekistan, gradual failures represent 

the most frequent and problematic category. Such faults 

cannot be reliably detected through traditional quarterly 

inspections, as they tend to develop and intensify in the 

intervals between scheduled checks. Therefore, the ability to 

forecast these failures in advance and to predict their 

potential occurrence has become a crucial necessity [8].  

The time-dependent nature of failures provides an 

important opportunity for forecasting. For example, if the 

resistance of a cable is observed to increase on average by 

0.2–0.5 Ohm per kilometer annually, this trend can be used 

to determine the rate of degradation and to estimate the 

subsequent decline in signal quality. Similarly, antenna 

misalignment occurring after each severe wind event can be 

tracked and predicted based on statistical data. 

Thus, while sudden failures can generally be eliminated 

through prompt technical maintenance, gradual failures can 

only be identified using forecasting systems, particularly 

automated approaches based on neural networks [9–11]. 

Although traditional forecasting methods are 

theoretically simple and relatively easy to apply in practice, 

they do not fully correspond to the actual conditions of TRC 

systems. These methods describe degradation processes only 

in a generalized manner and fail to account for complex 

electromagnetic environments, maintenance activities, and 

abrupt changes in operating conditions. As a result, their 
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application on the railways of Uzbekistan often leads to 

inaccurate forecasts. 

To overcome these limitations, more flexible methods 

capable of modeling complex processes are required, such as 

artificial neural networks [12]. The following section 

provides a detailed discussion of the theoretical foundations 

and practical implementation of such approaches. 

3. Results and Discussion 

Automated approaches based on neural networks. As 

a rule, the occurrence of unstable radio communication 

zones is associated with unexpected or gradually developing 

faults along the signal propagation path, as well as the 

influence of electromagnetic noise. 

Unexpected faults may arise within the operational 

limits of equipment performance. Such failures typically 

occur either spontaneously or as a result of external impacts. 

Examples include interruptions, short circuits, contact 

disconnections, insulation breakdowns, or mechanical 

damage. However, this category of faults is relatively easy 

to detect, since the location of the damage can usually be 

identified and eliminated quickly by conducting an external 

inspection of feeder lines and antenna equipment [13]. 

Gradual failures are characterized by the progressive 

degradation of parameters such as ∑𝑎𝑠𝑡, ∑𝑎𝑙𝑖𝑛, ∑𝑎𝑙𝑜𝑐, and 

𝑎𝐻. As a result, the overall communication range decreases, 

and unstable coverage zones appear in certain sections of the 

network. 

The causes of such failures may include corrosion of 

transmission lines, deterioration of contact quality, 

contamination of insulators, disruption of cable connections, 

reduction of the quality factor in resonant and locking 

circuits, changes in antenna radiation patterns, as well as 

degradation of feeder components due to aging or water 

ingress. 

Detecting gradual failures is complex, yet they manifest 

intermittently, which allows their occurrence to be 

diagnosed. For automated diagnostics, the primary input 

data are the signal levels recorded from stationary base 

stations. The results of these measurements are represented 

in the form of a two-dimensional vector [14]. 

 

𝑢̅𝑡 = |

𝑢𝑎1 𝑢𝑎2 … 𝑢𝑎𝑚
𝑢𝑏1 𝑢𝑏2 … 𝑢𝑏𝑚…
𝑢𝑔1

… …
𝑢𝑔2 …

…
𝑢𝑔𝑚

|, 

 

where 𝑢𝑔𝑚 denotes the average voltage at the 

locomotive receiver, 𝑚 represents the kilometer mark, and 𝑔 

corresponds to the active base station. 

The data presented in this form must first undergo 

preprocessing, where all missing elements are restored 

through interpolation, and the measured signal levels are 

aligned with the corresponding points (linked to each 

kilometer of the section).   

Neural network architecture. For forecasting tasks, a 

multilayer perceptron (MLP) architecture is most commonly 

applied. Its main components are as follows: 

• Input layer – vectors representing signal levels and 

contextual predictive factors. 

• Two hidden layers – performing nonlinear 

transformations. 

• Output layer – predicted signal levels and vectors 

of technical condition. 

The activation function selected is the sigmoid: 

 

𝑓(𝑥) =
1

1 + 𝑒−𝑥
 

  

Since the sigmoid function is differentiable, it enables 

the efficient application of gradient-based training 

algorithms, such as backpropagation [15]. 

Mathematical model. The mathematical model of the 

neural network can be expressed through the following 

system of equations: 

 

𝑐𝑗 = 𝑓 (∑𝑎𝑖𝛼𝑖𝑗 + 𝜒𝑗

𝑟

𝑖=1

) , 𝑗 = 1, . . . , 𝑟1, 

𝑘𝑠 = 𝑓(∑𝑐𝑗𝛽𝑗𝑠 + 𝜂𝑠

𝑟1

𝑗=1

) , 𝑠 = 1, . . . , 𝑟2, 

𝑞ℎ = 𝑓(∑𝑘𝑠𝛾𝑠ℎ + 𝑣ℎ

𝑟2

𝑗=1

) , ℎ = 1, . . . , 𝑛, 

where:  

• 𝑎𝑖 – elements of the input vector (signal levels and 

factors),  

• 𝛼, 𝛽, 𝛾 – synaptic weights, 

• 𝜒, 𝜂, 𝜐 – bias coefficients of the neurons,  

• 𝑐𝑗 , 𝑘𝑠, 𝑞ℎ – outputs of the first hidden layer, second 

hidden layer, and output layer, respectively.  

The output vector 𝑞ℎ represents the predicted signal 

levels and the technical condition of the system. 

Error function and training. During training, the 

neural network outputs are compared with real 

measurements. The error function is defined as:  

 

𝛷𝑖 =
1

2
(𝑢𝑔𝑖 − 𝑢𝑔𝑖

(𝑡+1)
)
2
, 

 

where 𝑢𝑔𝑖 is the real signal level and 𝑢𝑔𝑖
(𝑡+1)

 is the 

predicted signal level. 

The training objective is formulated as: 

 

max(𝛷𝑖) ≤ 𝛥, 

 

where 𝛥 is the maximum permissible prediction error.  

Using a gradient optimization algorithm, the synaptic 

weights and biases of the neurons are iteratively adjusted. 

In the simplest case, a single parameter, time, serves as 

the main argument for forecasting. In such cases, the 

problem can be solved by applying mathematical methods of 

extrapolating previous measurement results over time. 

However, in the present context, these methods exhibit 

several limitations: 

• it is impossible to construct an accurate predictive 

model without studying the operational history of 

the system over a long period or by incorporating 

additional types of data; 

• changes in parameters cannot be adequately 

described without proper mathematical 

characterization; 

• all mathematical forecasting methods are treated as 

open systems, where errors at the input are fully 

transmitted to the output, thus negatively affecting 
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prediction accuracy; 

• obtaining accurate forecasts requires consideration 

of all measures undertaken to improve the technical 

condition of TRC equipment, which is not feasible 

within the framework of purely mathematical 

methods; 

• at the initial stage of operating a fully modernized 

TRC network (e.g., during electrification), the 

necessary conditions for forecasting using 

mathematical methods are not present. 

This problem can be partially addressed through 

prediction based on the theory of statistical classification 

(pattern recognition), where extrapolative relationships are 

established from the available initial data. However, the 

inability to resolve poorly formalized aspects of the 

forecasting process and the relatively low accuracy of the 

results prevent these methods from being applied effectively. 

These shortcomings can be overcome by employing 

neural network (NN) algorithms, which extrapolate within 

the feature space of the technical system’s states. In general, 

the procedure for automated prediction of failures in train 

radio communication networks using NNs is illustrated in 

Figure 1. 

 
Figure 1. Automated procedure for forecasting failures in train radio communication networks

The central component of this structure is the neural 

network trained on a database formed from previous 

measurement results. Once the signal levels from stationary 

base stations are recorded, they are combined with data 

reflecting quality changes in equipment, line devices, and 

guiding channels, and then fed into the neural network as 

input. At the output, a vector is generated that represents the 

predicted future technical state of the TRC system. Based on 

these results, preventive maintenance measures are 

developed and implemented in practice. 

Using laboratory railcars, signal levels are periodically 

recorded, and the results are entered into the database, 

enabling the neural network to be retrained. In this way, the 

model is continuously refined and improved over time. 

In general, forecasting using a neural network consists 

of the following main stages: 

• collection of initial data and their normalization into 

a unified format; 

• synthesis of the predictive architecture of the neural 

network; 

• training of the neural network with empirical data 

samples to form the predictive model; 

• obtaining the forecast result for the specified 

prediction horizon; 

• verification of the predictive model against 

established criteria and its preparation for practical 

application. 

The application of neural networks for forecasting 

parametric failures in TRC networks has demonstrated high 

effectiveness in practice. Results indicate that this approach 

provides significantly greater accuracy compared to 

traditional methods and allows for efficient planning of 

maintenance activities even under complex operational 

conditions. However, like any technological solution, neural 

networks possess both advantages and limitations. At the 

same time, numerous prospects exist for further improving 

this approach in the future [16]. 

By employing neural networks, “uncertain 

communication zones” in TRC systems can be identified 

well in advance. For example, in the Kamchik tunnel, 

hazardous areas caused by signal attenuation can be 

predicted by the neural network several weeks beforehand. 

This provides dispatchers and technical staff with the 

opportunity to take preventive measures in advance. As a 

result, the overall safety of train operations is significantly 

enhanced. 

The architecture of the predictive neural network is 

illustrated in Figure 2. 
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Figure 2. Predictive neural network architecture

In traditional approaches, emergency maintenance 

operations require substantial costs, since eliminating 

failures after they occur demands more resources and time. 

A forecasting system, on the other hand, enables precise 

planning of preventive maintenance. For instance, if antenna 

adjustments or cable replacements are carried out before an 

emergency situation arises, overall expenses can be reduced 

by up to thirty percent. 

Neural networks can be retrained on the basis of newly 

collected data. Consequently, the system is continuously 

updated and adapts even when technical conditions change. 

For example, if the TRC system transitions from analog to 

digital equipment, the neural network can be retrained in a 

short period using the new parameters while continuing to 

function effectively [17]. 

Signal attenuation and electromagnetic interference 

often exhibit nonlinear characteristics. Conventional 

extrapolation methods cannot fully capture such dynamics. 

Neural networks, however, are capable of efficiently 

modeling and learning these complex nonlinear 

dependencies. 

A comparative analysis of traditional forecasting and 

neural network-based forecasting is presented in Table 2. 

Furthermore, the neural network-based forecasting 

system can be integrated with other systems currently being 

deployed in Uzbekistan Railways. For example, it can be 

combined with DMR base stations, GPS/GLONASS 

monitoring systems, and SCADA platforms to create a 

unified control center. This integration ensures not only 

reliable management of radio communication but also 

comprehensive monitoring of other technical subsystems. 

 

 

 

Table 2  

Comparison of traditional forecasting and neural 

network-based forecasting 

Indicators 

Traditional 

methods 

(extrapolation, 

ARIMA) 

Neural 

network-based 

forecasting 

Forecast 

accuracy 
±3–4 dB ±1.5 dB 

Historical data 

requirement 

Long-term 

(years) 

Can be trained 

even with short-

term data 

Consideration 

of maintenance 
No Yes 

Adaptation to 

EM 

environment 

Not fully 

reflected 
Adaptive 

Practical 

efficiency 
Moderate 

High (accuracy 

improvement of 

20–25%) 

 

The results of the discussion demonstrate that a neural 

network-based forecasting system can significantly enhance 

the reliability of TRC within Uzbekistan Railways. The 

advantages of this approach outweigh its limitations, as it 

ensures safety, reduces operational costs, and brings the 

system closer to meeting modern technological 

requirements. In the future, this approach may be further 

improved through integration with emerging technologies 

such as the Internet of Things (IoT), fifth-generation (5G) 

communication, and the Future Railway Mobile 

Communication System (FRMCS), thereby evolving into a 

more advanced and comprehensive solution [17]. 
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4. Conclusion 

This study examined the problem of forecasting 

parametric failures in TRC networks. First, the technical 

characteristics of existing systems, the theoretical model of 

signal propagation, and the causes of failures were analyzed. 

It was concluded that traditional forecasting methods are 

insufficient under real operating conditions, as they fail to 

account for maintenance activities and the complexity of the 

electromagnetic environment. 

A neural network-based forecasting approach was 

proposed. This method enables the processing of signal 

levels and the modeling of complex nonlinear processes. The 

results showed that uncertain communication zones can be 

identified one to two months in advance, with a prediction 

error of approximately ±1.5 dB, compared to ±3–4 dB for 

traditional methods. The readiness coefficient of the TRC 

system can thus be increased to 0.98. 

In Uzbekistan Railways, challenges such as attenuation 

of VHF signals, atmospheric noise in the HF band, and 

antenna misalignment across certain sections were 

effectively addressed through neural network-based 

forecasting. This approach not only improves safety but also 

reduces operational costs by up to thirty percent [18]. 

Overall, neural network-based forecasting represents a 

practical and scientifically grounded solution for 

significantly enhancing the reliability of TRC systems in 

Uzbekistan Railways. Moreover, it provides a robust 

foundation for the gradual transition of these systems to 

advanced digital technologies, including DMR, TETRA, and 

FRMCS. 
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