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Neural network-based prediction of technical failures in communication

Abstract:
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networks

A.Sh. Khurramov!®©2

ITashkent state transport university, Tashkent, Uzbekistan

This article discusses the problem of automated forecasting of the technical condition of train radio
communication networks within the railway sector of Uzbekistan. The technical characteristics of
existing systems, the theoretical model of signal propagation, and the main causes of failures are
examined in detail. Traditional forecasting approaches are shown to be limited, as they often fail to
adequately reflect nonlinear processes, the influence of electromagnetic interference, and the impact of
maintenance activities. To address these shortcomings, an automated forecasting approach based on
artificial neural networks is proposed. This method makes it possible to identify both sudden and
gradually developing faults in advance, thereby increasing overall system reliability, supporting effective
planning of technical maintenance, and reducing operational costs. Practical experiments carried out on
railway sections confirmed the effectiveness of the proposed methodology. Overall, the use of neural
networks for forecasting is considered a scientific and practical solution for enhancing the reliability of
train radio communication systems, improving safety, and accelerating the gradual transition toward
digital communication technologies.

Train radio communication, telecommunication networks, neural networks, predictive maintenance, fault
forecasting, technical condition monitoring, reliability, readiness coefficient, railway communication

systems, digital technologies

1. Introduction

Railway transport represents one of the key sectors of a
country’s economic and social infrastructure, and its
operation must consistently meet high standards of safety
and efficiency. Ensuring traffic safety and managing
transportation processes critically depend on operational-
technological communication systems (OTCS). These
systems provide continuous information exchange among
train drivers, dispatchers, station attendants, and technical
personnel. Therefore, train radio communication (TRC),
which constitutes an integral part of OTCS, is required to
guarantee a high level of reliability and continuity, serving
as one of the fundamental conditions for safe and stable
railway operations [1].

At present, TRC systems in Uzbekistan primarily
operate within the hectometer (HF/VHF low-band) and
meter (VHF high-band) frequency ranges. These ranges
have been in practical use for many years and were once
considered effective solutions. The advantage of the
hectometer range lies in its ability to provide long-distance
signal transmission. However, due to its high sensitivity to
atmospheric noise and industrial electromagnetic
interference, reliable communication is frequently disrupted.
The meter range, in contrast, ensures higher-quality voice
transmission, yet its dependence on line-of-sight
propagation leads to significant signal attenuation in
mountainous areas and especially within long tunnels.

Currently, TRC equipment and line infrastructure in
Uzbekistan are physically outdated. Corrosion in antennas
and cables, contamination of insulation, and loosening of
contacts gradually deteriorate signal quality. As a result,
“uncertain radio coverage zones” emerge within the
network, where train drivers cannot maintain stable
communication with dispatchers, thereby reducing the
overall level of operational safety [1].

allZ https://orcid.org/0000-0002-8443-9250

Traditional monitoring methods do not allow timely
identification of such problems. In the existing system,
signal levels are recorded only once every quarter using
laboratory railcars. However, new faults that occur in the
interval between inspections may remain undetected for
several months. Increasing the frequency of inspections
would sharply raise operational costs. Consequently, the
automated forecasting of parametric faults has become an
urgent and essential task.

Reliability indicators of train radio communication
networks. One of the most important concepts in assessing
the efficiency and safety of technical systems is reliability.
In TRC networks [2], reliability is evaluated using the
readiness coefficient (K):

K =—%P
9 T+ T
where:
o T, — the total operating time of the TRC channel,

e T, — the recovery time after a failure.

If failures occur infrequently or recovery is carried out
very quickly, the value of K; approaches one. This indicates
that the system is highly reliable. Conversely, if failures
occur frequently or the recovery process takes a long time,
the value of K, decreases significantly, reflecting reduced
system reliability.

For TRC systems, maintaining the readiness coefficient
within the range of 0.95-0.98 is considered one of the
essential safety requirements. In practice, however,
especially when using outdated equipment, this indicator
often does not exceed 0.90-0.92. Therefore, enhancing the
reliability of existing systems requires not only the rapid
detection of failures but, more importantly, their prediction
in advance [3].
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Empirical observations on the railways of Uzbekistan
show that TRC systems operating in the hectometer band are
frequently affected by atmospheric noise, resulting in
repeated signal losses. In the meter band, sudden attenuation
or complete loss of the signal is observed in mountainous
areas or inside tunnels. Under such conditions, the recovery
time (T}) increases, leading to a reduction in the readiness
coefficient. Consequently, minimizing T}, is a fundamental
requirement for improving the reliability of TRC systems.

2. Research methodology

Theoretical model of signal propagation. The primary
function of TRC systems is to ensure continuous and reliable
communication between the train driver and the dispatcher.
The stability of communication primarily depends on the
propagation characteristics of radio waves and the effective
transmission distance of the signal. Therefore, accurate
modeling of signal propagation and the establishment of
theoretical foundations are of crucial importance in TRC
networks [4].

One of the fundamental requirements for
communication quality in train radio systems is that, at any
point within a given section, the train driver must maintain
reliable contact with at least two stationary base stations
located on opposite sides. Based on this principle, the
normative condition can be expressed as follows:

T + r — 3 > l

where:

e 1 and r, — the reliable communication ranges (in
km) between the locomotive and the stationary
base stations on the left and right sides,
respectively,

e | —the total length of the section (in km).

If this condition is met, the train driver will be able to
maintain simultaneous communication with two base
stations at any point along the section. This serves as a
fundamental guarantee of operational safety requirements
[5]-

In radio communication systems, the communication
range can be calculated using the following formula:

Atx — Umin — Aant.loss B Zast B Zalin B Zaloc

r =
ay
where:
e A, — output signal level of the transmitting
station, dB;
® U, — minimum useful signal level at the

receiving station, dB;

Agnt.loss — antenna transition losses, dB;

> age — attenuation in stationary equipment, dB;
Y a;in — attenuation in feeder lines, dB;

>a;oc — attenuation in locomotive equipment, dB;

ay — attenuation coefficient per kilometer of
transmission line, dB/km.

This formula provides an accurate evaluation of the
signal quality and coverage range of train radio
communication systems. Any variation in these parameters
can have a significant impact on the overall result [6].

The output signal level (4;,) is the key indicator of the
transmitter’s power. The higher the power, the greater the

achievable communication distance. However, excessive
power consumption increases energy costs and may violate
electromagnetic compatibility requirements.

The minimum useful signal (u;,;;,) represents the lowest
value necessary for the receiving station to distinguish the
signal from background noise. This parameter depends on
the sensitivity of the receiving equipment and the prevailing
noise level.

Losses (Aant.ioss» Xlsts NQin> Xlioc) denote the
attenuation occurring during antenna transition, propagation
along the transmission line, and within locomotive
equipment. In practice, these losses often represent the
primary reason for signal quality degradation.

The per-kilometer attenuation coefficient (ay)
characterizes the natural decrease in signal strength along the
guiding line [7]. It depends on the material of the line, cable
quality, and surrounding environmental conditions.

By applying the theoretical model of signal propagation,
it is possible to preliminarily assess signal quality and
coverage distance in TRC systems. This enables:

e optimal selection of inter-station distances,
e  accurate design of antenna placement,

e timely maintenance of transmission lines,
e reduction of operational costs.

However, the model is based solely on static calculations
and does not fully account for factors such as equipment
aging, gradual degradation, and the influence of external
clectromagnetic environments over time. Therefore, for
forecasting parametric failures, more effective approaches
are required — in particular, automated prediction methods
based on neural networks [8].

The criticality of failures depends on both their rate of
impact and the possibility of detection. Sudden failures are
usually recognized immediately and can typically be
eliminated within a short period of time. Gradual failures, on
the other hand, are more hazardous since they may remain
unnoticed for an extended period while posing a significant
threat to operational safety.

On the railways of Uzbekistan, gradual failures represent
the most frequent and problematic category. Such faults
cannot be reliably detected through traditional quarterly
inspections, as they tend to develop and intensify in the
intervals between scheduled checks. Therefore, the ability to
forecast these failures in advance and to predict their
potential occurrence has become a crucial necessity [8].

The time-dependent nature of failures provides an
important opportunity for forecasting. For example, if the
resistance of a cable is observed to increase on average by
0.2-0.5 Ohm per kilometer annually, this trend can be used
to determine the rate of degradation and to estimate the
subsequent decline in signal quality. Similarly, antenna
misalignment occurring after each severe wind event can be
tracked and predicted based on statistical data.

Thus, while sudden failures can generally be eliminated
through prompt technical maintenance, gradual failures can
only be identified using forecasting systems, particularly
automated approaches based on neural networks [9—11].

Although traditional forecasting methods are
theoretically simple and relatively easy to apply in practice,
they do not fully correspond to the actual conditions of TRC
systems. These methods describe degradation processes only
in a generalized manner and fail to account for complex
electromagnetic environments, maintenance activities, and
abrupt changes in operating conditions. As a result, their
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application on the railways of Uzbekistan often leads to
inaccurate forecasts.

To overcome these limitations, more flexible methods
capable of modeling complex processes are required, such as
artificial neural networks [12]. The following section
provides a detailed discussion of the theoretical foundations
and practical implementation of such approaches.

3. Results and Discussion

Automated approaches based on neural networks. As
a rule, the occurrence of unstable radio communication
zones is associated with unexpected or gradually developing
faults along the signal propagation path, as well as the
influence of electromagnetic noise.

Unexpected faults may arise within the operational
limits of equipment performance. Such failures typically
occur either spontaneously or as a result of external impacts.
Examples include interruptions, short circuits, contact
disconnections, insulation breakdowns, or mechanical
damage. However, this category of faults is relatively easy
to detect, since the location of the damage can usually be
identified and eliminated quickly by conducting an external
inspection of feeder lines and antenna equipment [13].

Gradual failures are characterized by the progressive
degradation of parameters such as Y aq, > Qiin, 2.Qioc, and
ay. As a result, the overall communication range decreases,
and unstable coverage zones appear in certain sections of the
network.

The causes of such failures may include corrosion of
transmission lines, deterioration of contact quality,
contamination of insulators, disruption of cable connections,
reduction of the quality factor in resonant and locking
circuits, changes in antenna radiation patterns, as well as
degradation of feeder components due to aging or water
ingress.

Detecting gradual failures is complex, yet they manifest
intermittently, which allows their occurrence to be
diagnosed. For automated diagnostics, the primary input
data are the signal levels recorded from stationary base
stations. The results of these measurements are represented
in the form of a two-dimensional vector [14].

Ugq Ug2 Ugm
_ u
U = Up1 .1.7.2 Upm ,
Ugr  Ugo Ugm

where 1wy, denotes the average voltage at the
locomotive receiver, m represents the kilometer mark, and g
corresponds to the active base station.

The data presented in this form must first undergo
preprocessing, where all missing elements are restored
through interpolation, and the measured signal levels are
aligned with the corresponding points (linked to each
kilometer of the section).

Neural network architecture. For forecasting tasks, a
multilayer perceptron (MLP) architecture is most commonly
applied. Its main components are as follows:

e nput layer — vectors representing signal levels and

contextual predictive factors.

e Two hidden layers — performing nonlinear

transformations.

e Qutput layer — predicted signal levels and vectors

of technical condition.
The activation function selected is the sigmoid:

fl) =

1+e™™

Since the sigmoid function is differentiable, it enables
the efficient application of gradient-based training
algorithms, such as backpropagation [15].

Mathematical model. The mathematical model of the
neural network can be expressed through the following
system of equations:

-
Cj=f<zaiaij+)(j>. j=1,...,m,

i=1
5t

kS:f ZC]ﬁ]S-l_ns ’ s:]-i---'TZ:

j=1
T2
qh:f ksysh+vh ) h=1,...,n,
j=1
where:
e a; — clements of the input vector (signal levels and
factors),

e , f3, y — synaptic weights,

e ¥, 7,V — bias coefficients of the neurons,

® ¢, ks, qn —outputs of the first hidden layer, second

hidden layer, and output layer, respectively.

The output vector qp represents the predicted signal
levels and the technical condition of the system.

Error function and training. During training, the
neural network outputs are compared with real
measurements. The error function is defined as:

;= %(ugz - u;tiﬂ))z.

where ug; is the real signal level and uétiﬂ) is the

predicted signal level.
The training objective is formulated as:

max(®;) < 4,

where 4 is the maximum permissible prediction error.

Using a gradient optimization algorithm, the synaptic
weights and biases of the neurons are iteratively adjusted.

In the simplest case, a single parameter, time, serves as
the main argument for forecasting. In such cases, the
problem can be solved by applying mathematical methods of
extrapolating previous measurement results over time.
However, in the present context, these methods exhibit
several limitations:

e it is impossible to construct an accurate predictive
model without studying the operational history of
the system over a long period or by incorporating
additional types of data;

e changes in parameters cannot be adequately
described without proper mathematical
characterization;

e all mathematical forecasting methods are treated as
open systems, where errors at the input are fully
transmitted to the output, thus negatively affecting
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prediction accuracy;

e obtaining accurate forecasts requires consideration
of all measures undertaken to improve the technical
condition of TRC equipment, which is not feasible
within the framework of purely mathematical
methods;

e at the initial stage of operating a fully modernized
TRC network (e.g., during electrification), the
necessary conditions for forecasting using
mathematical methods are not present.

This problem can be partially addressed through

Signzllevel m =surem ant r=zult

prediction based on the theory of statistical classification
(pattern recognition), where extrapolative relationships are
established from the available initial data. However, the
inability to resolve poorly formalized aspects of the
forecasting process and the relatively low accuracy of the
results prevent these methods from being applied effectively.

These shortcomings can be overcome by employing
neural network (NN) algorithms, which extrapolate within
the feature space of the technical system’s states. In general,
the procedure for automated prediction of failures in train
radio communication networks using NN is illustrated in
Figure 1.

' N

Datzbzs-tminad
pradictive neural

Vector of the Carrying oot
pradictad e chniczl] mezsnees i
Condition arhEnce the
- 12

technical

condition

3

1

Vector characer Zing
changeszin the Echnical

nebwork
Mode] of echrical devices
znd their dynzmic L
vaf tions (predictive
fadors) |
1
Pradicti
= front
factors

i ..

Brevio: m=suement eaulE
dzkbazs

coqudition

Figure 1. Automated procedure for forecasting failures in train radio communication networks

The central component of this structure is the neural
network trained on a database formed from previous
measurement results. Once the signal levels from stationary
base stations are recorded, they are combined with data
reflecting quality changes in equipment, line devices, and
guiding channels, and then fed into the neural network as
input. At the output, a vector is generated that represents the
predicted future technical state of the TRC system. Based on
these results, preventive maintenance measures are
developed and implemented in practice.

Using laboratory railcars, signal levels are periodically
recorded, and the results are entered into the database,
enabling the neural network to be retrained. In this way, the
model is continuously refined and improved over time.

In general, forecasting using a neural network consists
of the following main stages:

o collection of initial data and their normalization into

a unified format;

e gsynthesis of the predictive architecture of the neural

network;

e training of the neural network with empirical data

samples to form the predictive model;

e obtaining the forecast result for the specified

prediction horizon;

e verification of the predictive model against
established criteria and its preparation for practical
application.

The application of neural networks for forecasting
parametric failures in TRC networks has demonstrated high
effectiveness in practice. Results indicate that this approach
provides significantly greater accuracy compared to
traditional methods and allows for efficient planning of
maintenance activities even under complex operational
conditions. However, like any technological solution, neural
networks possess both advantages and limitations. At the
same time, numerous prospects exist for further improving
this approach in the future [16].

By employing neural networks, ‘“uncertain
communication zones” in TRC systems can be identified
well in advance. For example, in the Kamchik tunnel,
hazardous areas caused by signal attenuation can be
predicted by the neural network several weeks beforehand.
This provides dispatchers and technical staff with the
opportunity to take preventive measures in advance. As a
result, the overall safety of train operations is significantly
enhanced.

The architecture of the predictive neural network is
illustrated in Figure 2.
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Figure 2. Predictive neural network architecture

In traditional approaches, emergency maintenance
operations require substantial costs, since eliminating
failures after they occur demands more resources and time.
A forecasting system, on the other hand, enables precise
planning of preventive maintenance. For instance, if antenna
adjustments or cable replacements are carried out before an
emergency situation arises, overall expenses can be reduced
by up to thirty percent.

Neural networks can be retrained on the basis of newly
collected data. Consequently, the system is continuously
updated and adapts even when technical conditions change.
For example, if the TRC system transitions from analog to
digital equipment, the neural network can be retrained in a
short period using the new parameters while continuing to
function effectively [17].

Signal attenuation and electromagnetic interference
often exhibit nonlinear characteristics. Conventional
extrapolation methods cannot fully capture such dynamics.
Neural networks, however, are capable of efficiently
modeling and learning these complex nonlinear
dependencies.

A comparative analysis of traditional forecasting and
neural network-based forecasting is presented in Table 2.

Furthermore, the neural network-based forecasting
system can be integrated with other systems currently being
deployed in Uzbekistan Railways. For example, it can be
combined with DMR base stations, GPS/GLONASS
monitoring systems, and SCADA platforms to create a
unified control center. This integration ensures not only
reliable management of radio communication but also
comprehensive monitoring of other technical subsystems.

Table 2
Comparison of traditional forecasting and neural
network-based forecasting

Traditional
methods Neural
Indicators . network-based
(extrapolation, forecastin
ARIMA) g
Forecast +3-4 dB +1.5 dB
accuracy
Historical data Long-term Can be. trained
requirement (years) even with short-
term data
Cons¥derat10n No Yes
of maintenance
Adaptation to
EM Iri%teﬁgg Adaptive
environment
Practical ,ngh (accuracy
efficiency Moderate improvement of
20-25%)

The results of the discussion demonstrate that a neural
network-based forecasting system can significantly enhance
the reliability of TRC within Uzbekistan Railways. The
advantages of this approach outweigh its limitations, as it
ensures safety, reduces operational costs, and brings the
system closer to meeting modern technological
requirements. In the future, this approach may be further
improved through integration with emerging technologies
such as the Internet of Things (IoT), fifth-generation (5G)
communication, and the Future Railway Mobile
Communication System (FRMCS), thereby evolving into a
more advanced and comprehensive solution [17].
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4. Conclusion

This study examined the problem of forecasting
parametric failures in TRC networks. First, the technical
characteristics of existing systems, the theoretical model of
signal propagation, and the causes of failures were analyzed.
It was concluded that traditional forecasting methods are
insufficient under real operating conditions, as they fail to
account for maintenance activities and the complexity of the
electromagnetic environment.

A neural network-based forecasting approach was
proposed. This method enables the processing of signal
levels and the modeling of complex nonlinear processes. The
results showed that uncertain communication zones can be
identified one to two months in advance, with a prediction
error of approximately +1.5 dB, compared to £3—4 dB for
traditional methods. The readiness coefficient of the TRC
system can thus be increased to 0.98.

In Uzbekistan Railways, challenges such as attenuation
of VHF signals, atmospheric noise in the HF band, and
antenna misalignment across certain sections were
effectively addressed through neural network-based
forecasting. This approach not only improves safety but also
reduces operational costs by up to thirty percent [18].

Overall, neural network-based forecasting represents a
practical and scientifically grounded solution for
significantly enhancing the reliability of TRC systems in
Uzbekistan Railways. Moreover, it provides a robust
foundation for the gradual transition of these systems to
advanced digital technologies, including DMR, TETRA, and
FRMCS.
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