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TO THE RESEARCH QUESTION WARMLY WEIGHT OF EXCHANGE PROCESSES AT 

PASSIVE COOLING OF THE GARRET IN THE CONDITIONS OF THE HOT CLIMATE 

 

Nozima Rakhimova , 

Elena Shchipacheva Vladimirovna, 

Tashkent State Transport University, Tashkent, Uzbekistan 

 

Abstract: Numerous scientific studies are being carried out around the world to development mathematical 

models that qualitatively describe the processes occurring in the external fencing thermophysical processes 

under the influence of external climatic factors and the internal environment of the premises. In countries with 

hot climates, attention of specialists is directed to the protection buildings from overheating. In the article the 

issues of heat and mass transfer in the "water-air" system are considered, taking into account non-stationary 

conditions of the temperature and humidity regime of the attic space.  

Key words : Attic space, temperature and humidity conditions, evaporation liquids, hot climate, heat and 

mass transfer, living quarters, non-stationary conditions, mathematical model 

 

INTRODUCTION 

In areas of construction with a hot climate, providing comfortable living conditions for the 

upper floors of buildings that are most exposed to heat from the attic space can be achieved through 

the use of natural environmental conditions. In previous studies, we found that the use of a cuvette 

with water in the construction of the attic contributes to the cooling of the air in the attic space due to 

the process of water evaporation [1-3]. To assess the effectiveness of such a technique, it is necessary 

to consider the issues of heat and mass transfer in the "water-air" system, taking into account the non-

stationary conditions of the temperature and humidity regime of the attic space. 

OBJECTS AND METHODS OF RESEARCH 

The process of evaporation of a water drop (the rate of decrease in its radius) was considered 

on the basis of the diffusion equation, while it was assumed that it proceeds under conditions of a 

change in temperature and humidity of two media (water, air). An integral part of the non-stationary 

evaporation model should be the description of the distribution of the vapor concentration and the 

temperature field in the medium surrounding the drop, as well as the time dependence of the 

concentration of saturated vapors on the surface of the drop. 

According to Maxwell [4, 5], we assume that the vapor concentration at the droplet surface 

is equal to the concentration of saturated vapor at its surface temperature. 

We represent the initial equations of diffusion (thermal conductivity) in the form [6]: 

  

                                                     
𝜕𝑐1

𝜕𝜏
= 𝐷 (

𝜕2𝑐1

𝜕𝑟2 +
2

𝑟

𝜕𝑐1

𝜕𝑟
),                                            (1)            

                                                     
𝜕𝑇

𝜕𝜏
= 𝑎 (

𝜕2𝑇

𝜕𝑟2
 +  

2

𝑟
 
𝜕𝑇

𝜕𝑟
).(2)    

The initial and boundary conditions of equations (1) and (2) for relative vapor 

concentrations c 1 and temperature T are written as: 

 

s 1 ( r, t ) ê t=0  = s 10 , s 1 ( r, t ) ê r =   = s 1  =  s 10 , (3) 
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                                        T(r,t)êt=0 = T0,  T(r,t)êr= = T = T0,                                            (4) 

 

                                          𝐷𝑚1𝑛𝑞  
𝜕𝑐1

𝜕𝑟 
 êr=R = -l 

𝜕𝑇

𝜕𝑟 
 êr=R ,                                            (5) 

where r is the radial coordinate in the spherical system (the origin is at the center of the 

drop), t is the time, D = nm 2 D 12 / r e , D 12 is the mutual diffusion coefficient, n = n 1 + n 2 , n 1 , n 2 is 

the concentration of water and air molecules, respectively, m 2 is the mass of an air molecule, r e is the 

density of the vapor-gas mixture, a is the thermal diffusivity, l  -  the thermal conductivity, q is the 

specific heat of the phase transition. Conditions (3) and (4) mean that at the moment of time   t the 

relative concentration c 1 and relative temperature T at r = are the same as at the initial moment t  = 

0 . Equation (5) shows that at a fixed droplet radius ( r = R ) there is an obvious correspondence 

between the vapor concentration c 1 and the temperature T . 

Let us write down the boundary condition that allows us to take into account the effect of 

the evaporation coefficient a  on the process under consideration: 

                                       𝐷 
𝜕𝑐1

𝜕𝑟
 ê r=R = 𝛼 ∙

𝑣

4
∙ (c 1s - c 1 ) ê r=R . (6) 

In (6) v =4√𝑘𝑇𝑜/2𝜋𝑚1 -  the average absolute thermal velocity of vapor molecules, where 

k is the Boltzmann constant, c 1 s is the diffusion flux concentration , from 1 -   the concentration of 

the flow according to the Hertz-Knudsen formula [5,7] discharged through the Knudsen layer from 

the surface of the drop. 

Addiction evaporation coefficient a on the temperature T of the water in the cuvette, we 

obtain by the method of molecular dynamics [8], based on the theory of translational motion of Ya . 

According to [9], the time t   of the stay of a molecule in the liquid volume is determined by the 

expression 

 

                             𝜏 = 𝜏0EXP (
𝐸0

𝑘𝑇
),      𝑓 =  

1

𝜏
 = 𝑓0EXP (

𝐸0

𝑘𝑇
),                                        (7) 

where t 0 , f 0 are the oscillation period and the frequency of the molecule, E 0 is the activation 

energy of the molecules required to remove the liquid molecule from its free surface, determined by 

the expression: 

                                                𝐸0 = 
𝐿𝑀

𝑁𝐴
, (8) 

where L is the specific heat of vaporization, M is the molar mass, N A is the Avogadro 

number. 

Taking into account that the movement (movement) of molecules in all directions is equally 

probable, the probability P of the escape of molecules from the liquid volume, as a function of its 

temperature, will be expressed as the ratio of the frequency of change of position f to the frequency 

of vibrations of the molecule f 0, and the evaporation coefficient a  - through the probability P by the 

method least squares (Fig. 1): 

 

                                                  𝑃 =
𝑓

𝑓0
= EXP (−

𝐸0

𝑘𝑇
).                                                (9) 
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FIGURE 1. 

 

Probability P the escape of a molecule from the bulk of the liquid and the evaporation 

coefficient a as a function of the temperature of the water in the temperature range from the freezing 

point to the boiling point. 

The formula that determines the concentration of saturated vapors over the spherical surface 

of a droplet will be obtained based on the approximate Kelvin (Thomson) equation [10] 

 

𝑐1𝑠(𝜏) = 𝑐1𝑠(𝜏) (1 +
𝑘𝜎

𝑅
)(10) 

and Klaiperon-Clausius [11] 

 

𝑐1𝑠(𝜏) = 𝑐1𝑠0{1 + 𝑘𝑞[𝑇𝑠(𝜏) − 𝑇0]}.(eleven) 

In (11), the line above the letter indicates the value 𝑐1𝑠at its surface temperature T s = T s ( t 

)= T s ( r , t ) ê r = R , namely 

 

𝑐1𝑠(𝜏) = 𝑐1(𝑇𝑠) =
𝑛1(𝑇𝑠)

𝑛
,    𝑐1𝑠0 = 𝑐1𝑠(𝜏)  ê t = 0 .                              (12) 

In (10), (11) the notation is adopted: 

 

𝑘𝜎 =
2𝑚1𝜎

𝑘𝑇𝜌𝑖
, 𝑘𝑞 =

𝑞𝑚1−𝑘𝑇0

𝑘𝑇0
2 , (13) 

Where, ri is the density of a water drop, s is the coefficient of surface tension. 

The final formula for c 1 s ( t ) is obtained by excluding the function from equations (10), (11) 

𝑐1𝑠(𝜏): 

с1𝑠(𝜏) = с1𝑠0{1 + 𝑘𝑞[𝑇𝑠(𝜏) − 𝑇0]},(14) 

Where, 𝑐1𝑠0 = 𝑐1𝑠0 (1 +
𝑘𝜎

𝑅
). 

The solution of the problem of the nonstationary process of evaporation of a drop (the rate 

of change of its radius) will be carried out by the method of Laplace integral transformations [12]. 

The Laplace transform establishes a relationship between the original f ( t ) and its image F ( p ): 
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                                      𝐹(𝑟, 𝑝) = 𝐿{𝑓(𝑟, 𝜏)} = ∫ 𝑓(𝑟, 𝜏)
∞

0
𝑒𝑥𝑝(−𝑝𝜏)𝑑𝜏,                        (15) 

Where, p is a complex parameter. 

To find the corresponding images of equations (1) and (2), we introduce the notation 

 

                                𝑆(𝑟, 𝑝) = 𝐿{𝑐1(𝑟, 𝜏)},   𝛩(𝑟, 𝑝) = 𝐿{𝑇(𝑟, 𝜏)} 

and taking into account the boundary conditions (3), (4), we write: 

 

                                              𝐷𝑆 +
2𝐷

𝑟
𝑆 −  𝑝𝑆 + 𝑐1 = 0,                                            (16) 

                                       𝑎𝛩 +
2𝑎

𝑟
𝛩 −  𝑝𝛩 + 𝑇0 = 0.                                            (17) 

Equations (16), (17) are second-order ordinary differential equations for unknown functions 

S ( r , p ), ( r , p ), where r is an independent variable and p is a parameter. Their general solution 

has the form [12]: 

                               𝑆(𝑟, 𝑝) −
𝑐1

𝑝
=

𝐴

𝑟
𝑒𝑥𝑝 (−√

𝑝

𝐷
𝑟) +

𝐴1

𝑟
𝑒𝑥𝑝 (√

𝑝

𝐷
𝑟)(18) 

                              𝛩(𝑟, 𝑝) −
𝑇0

𝑝
=

𝐵

𝑟
𝑒𝑥𝑝 (−√

𝑝

𝑎
𝑟) +

𝐵1

𝑟
𝑒𝑥𝑝 (√

𝑝

𝑎
𝑟),                                (19) 

where A , A 1 , B , B 1 are arbitrary constants determined from the boundary conditions of the 

problem. Taking into account (3), (4) we find: 

                                              A 1 = B 1 = 0. (20) 

the unknowns A , B by expressing the boundary conditions (5), (6), (14) in the space of 

images, taking the notation S s ( p ) = L { c 1 s ( t )}: 

 

                                  𝛾𝑝1𝑞1𝐴 + 𝜆𝑝2𝑞2𝐵 = 0,  

                          (𝐷𝑝1𝑎𝑣)𝑞1𝐴 − 𝜆𝑎𝑣𝑅𝑆𝑠 = −
𝑎𝑣𝑐10𝑅

𝑝
, (21) 

                                  𝑐10𝑘𝑞𝑞2𝐵 − 𝑅𝑆𝑠 = −
𝑐10𝑅

𝑝
, 

Where 

                      𝛾 = 𝐷𝑚1𝑛𝑞,   𝑝1 = √
𝑝

𝐷
+

1

𝑅
, 𝑝2 = √

𝑝

𝑎
+

1

𝑅
 ,     

                   𝑞1 = 𝑒𝑥𝑝 (−𝑅√
𝑝

𝐷
) , 𝑞2 = 𝑒𝑥𝑝 (−𝑅√

𝑝

𝑎
) .      

 

The system of equations (21) is an algebraic system of equations, solving it, we find the 

function S s and the desired coefficients A , B : 

                                     𝐴 =
𝜀𝜆𝑅𝑝2

𝑝𝛿𝑞1
,   𝐵 =

𝜀𝛾𝑅𝑝1

𝑝𝛿𝑞2
, (22) 

 

                                       𝑆𝑠 =
𝑐1𝑠0

𝑝
+

𝜀𝑘𝑞𝜎𝑝1

𝑝𝛿
, (23) 

Where 

                            𝜀 = 𝛼𝑣(𝑐10 − 𝑐1𝑠0),        𝑘𝑞𝜎 = 𝑐1𝑠0𝑘𝑞𝛾, 

                        𝛿 = 𝑞0𝑝 + 𝑞1√𝑝 + 𝑞2,     𝑞0 = 𝜆√
𝐷

  𝑎   
,  
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                           𝑞1 = 
𝛼𝑣(𝜆√𝐷+𝑘𝑞𝜎√𝑎)

√𝐷𝑎
+

𝑞0

𝑅
(√𝐷 + √𝑎), 

                            𝑞2 =  
1

𝑅2
[𝐷𝜆 + 𝛼𝑣𝑅(𝜆 + 𝑘𝑞𝜎)].  

 

 If we denote z =  √𝑝, then the solution of the problem is reduced to solving the quadratic 

equation d = K 0 z 2 + K 1 z + K 2 with real and different roots, since its determinant D d  : 

                  𝐷𝛿 ≡ 𝐾1
2 − 4𝐾0𝐾2 = [

𝐾0(√𝐷−√𝑎)

𝑅
+ 𝛼𝑣

(𝜆√𝐷−𝑘𝑞𝜎√𝑎)

√𝐷𝑎
]

2

+
4𝑘𝑞𝜎𝜆(𝛼𝑣)2 

√𝐷𝑎
 > 0 .  

Next, introducing the notation for positive quantities: 

                      𝛽1 = −𝑧1 =
(𝐾1−√𝐷𝛿)

2𝐾0
,    𝛽2 = −𝑧2 =

(𝐾1+√𝐷𝛿)

2𝐾0
, ( b 1 > 0, b 2 > 0), 

we get 

                                      𝛿 = 𝐾0(√𝑝 + 𝛽1)(√𝑝 + 𝛽2). 

By virtue of relations (20) and (22), we find the following expressions for functions (18) and 

(19): 

                              𝑆(𝑟, 𝑝) =
𝑐10

𝑝
−

𝜀𝜆𝑅

𝑟
∙

𝑝2

𝑝𝛿
𝑒𝑥𝑝(−𝑟𝑐√𝑝),(24) 

                          𝛩(𝑟, 𝑝) =
𝑇0

𝑝
+

𝜀𝛾𝑅

𝑟
∙

𝑝1

𝑝𝛿
𝑒𝑥𝑝(−𝑟𝑇√𝑝),(25) 

Where   

                                      r c = ( r – R ) / √𝐷, r T  = ( r – R ) / √𝑎. 

      Now we introduce the notation used in the space of originals of the functions: 

 

                          Ф(𝑥, 𝛽, 𝜏) = 𝑒𝑟𝑓𝑐 (
𝑥

2√𝜏
) − 𝑒𝑥𝑝(𝛽2𝜏 + 𝑥𝛽) ∙ 𝑒𝑟𝑓𝑐 (

𝑥

2√𝜏
+ 𝛽√𝜏),  

𝜑(𝛽, 𝜏) = 1 − Ф(0, 𝛽, 𝜏) = 𝑒𝑥𝑝(𝛽2𝜏) ∙ 𝑒𝑟𝑓𝑐(𝛽√𝜏), 

Where 

          𝑟𝑓𝑐(𝑧) = 1 − 𝑒𝑟𝑓(𝑧) =
2

𝜋
∫ 𝑒𝑥𝑝(−𝑢2)𝑑𝑢

∞

𝑧
  -  probability integral [13, 14]. 

In accordance with the theory of the Laplace transform, the distribution of vapor 

concentration and the temperature field in the medium surrounding the drop and the dependence of 

the concentration of saturated vapor on the surface of the drop on time (non-stationary condition) will 

be obtained by passing to the space of the originals, bearing in mind expressions (24), (25) and ( 23): 

                         с1(𝑟, 𝜏) =  с10 −  
𝜀𝜆

𝑟√𝑎
 ∑ 𝐴(𝛽𝑗) ∙ Ф(𝑟𝑐, 𝛽𝑗 , 𝜏)2

𝑗=1 ,                                        (26) 

           

                                 𝑇(𝑟, 𝜏) =  𝑇0 +   
𝜀𝛾

𝑟√𝐷
 ∑ 𝐵(𝛽𝑗) ∙ Ф(𝑟𝑇 , 𝛽𝑗 , 𝜏)2

𝑗=1 ,(27) 

 

                                        с1𝑠(𝜏) =  с1𝑠0 +   
𝜀𝑘𝑞𝜎

𝑅√𝐷
 [

√𝐷

𝐾2
− ∑ 𝐵(𝛽𝑗) ∙ 𝜑(𝛽𝑗, 𝜏)2

𝑗=1 ],(28) 

Where 

                                               𝐴(𝛽𝑗) =
𝑅𝛽𝑗−√𝑎

𝐾0𝛽𝑗
2−𝐾2

, 𝐵(𝛽𝑗) =
𝑅𝛽𝑗−√𝐷

𝐾0𝛽𝑗
2−𝐾2

 . 

The rate of change in the droplet radius under nonstationary conditions can be written as the 

expression [5] 
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𝑑𝑅

𝑑𝜏
=

𝐷𝑛𝑚1

𝜌𝑖
∙

𝜕𝑐1 

𝜕𝑟
 ê r = R .     (29) 

Having determined the expression for ( с 1 / r ) ê r = R from relation (26), by formula (29) 

we obtain an expression for the rate of change of the droplet radius, taking into account non-stationary 

conditions: 

                                  
𝑑𝑅

𝑑𝜏
 =

𝜀𝐷𝑛𝑚1𝜆

𝜌𝑖𝑅2
∙ [

1

𝐾2
+

1

√𝐷𝑎
∑ 𝐶(𝛽𝑗) ∙ 𝜑(𝛽𝑗 , 𝜏)2

𝑗=1 ],(thirty) 

Where 

                                        𝐶(𝛽𝑗) =
𝑅2𝛽𝑗

2−𝑅(√𝐷+√𝑎)𝛽𝑗+√𝐷𝑎

𝐾0𝛽𝑗
2−𝐾2

.  

Note that in (30) the sign of the quantity e = a v ( from 10 - c 1 so ) determines the direction 

of the process: at c 10 > c 1 so – evaporation; for c 10 < c 1 so  - condensation. 

The formula for changing the drop velocity, taking into account the nonstationarity of 

process (30), is rather cumbersome in numerical calculations. Bearing in mind that for our purposes 

we can confine ourselves to asymptotic approximations with sufficient accuracy, we obtain them by 

passing to the limiting expressions for the rate of change of the droplet radius. 

Let us transform the right side of expression (30): 

 

 
𝑑𝑅

𝑑𝜏
=

𝜀𝐷𝑛𝑚1𝜆

𝜌𝑖𝑅2 ∙ [
𝐷𝜆

𝐷𝜆+𝛼𝑣𝑅(𝜆+𝑘𝑞𝜎)
−

𝐾0

√𝐷𝛿
(𝛽𝑗 −

√𝐷+√𝑎

𝑅
+

√𝐷𝑎

𝑅2𝛽𝑗
) ∙ 𝜑(𝛽𝑗 , 𝜏)].(30a) 

It is easy to see that 

lim
𝜏→0

𝜑(𝛽𝑗, 𝜏) = 0; lim
𝑡→∞

𝜑(𝛽𝑗 , 𝜏) = 1. 

Then, by formula (30a), we find the limit expressions 

 

                                       (
𝑑𝑅

𝑑𝜏
)

0
= lim

𝜏→0
(

𝑑𝑅

𝑑𝜏
) =

𝜀𝑛𝑚1

𝜌𝑖
,                                                          (31) 

 

                                  (
𝑑𝑅

𝑑𝜏
)

∞
= lim

𝜏→∞
(

𝑑𝑅

𝑑𝜏
) =

𝜀𝑛𝑚1

𝜌𝑖
∙

𝐷𝜆

𝐷𝜆+𝛼𝑣𝑅(𝜆+𝑘𝑞𝜎)
.                               (32)      

 

RESULTS AND THEIR DISCUSSION 

An analysis of expressions (31) and (32) showed that at small time intervals, the diffusion 

coefficient under non-stationary conditions of the evaporation process is not included in expression 

(31), that is, under conditions of simultaneous changes in the temperature of the evaporating liquid 

and ambient air, a certain time is required, after which , the diffusion process begins to affect the rate 

of evaporation. Considering the right side of relation (31) as a function of R , we can say that the 

greater the curvature of the spherical surface of the evaporating drop, the higher the absolute value of 

the initial rate of change in its radius. Bearing in mind the asymptotic meaning of the analyzed 

expressions, if we consider the ratio ( dR / dt ) / ( dR / dt ) 0 as a function of R , then we can conclude 

that this ratio increases to a certain constant value with increasing curvature of the surface of a 

spherical drop , and 

( dR / dt ) < ( dR / dt ) 0 , 
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which is an obvious result in non-stationary conditions, when the temperatures of the evaporating 

liquid and the surrounding air tend to equalize, that is, to thermodynamic equilibrium, which means 

that the evaporation rate decreases with time. 

CONCLUSION 

Comparing the results of numerical calculations of the rate of evaporation of water from the 

cuvette (the time of complete evaporation), performed by us for stationary and non-stationary 

evaporation conditions, we found that the time of complete evaporation in the non-stationary mode 

slows down somewhat relative to the time of complete evaporation in the stationary mode. However, 

this difference is not significant, which allows in solving the problem of heat and mass transfer in the 

attic, taking into account the process of passive cooling, to be limited to the approximation of a 

stationary mode. 
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